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Supplemental material

0.1 Climate Forecast System Reanalysis

The Climate Forecast System Reanalysis is a global weather product constructed by NOAA (Saha et al.,
2010). CFSR merges the overlapping ranges of satellite products, as they are available across years:

CFSR Satellite Instrument Usage
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CFSR combines both conventional and satellite data from the following sources:

Conventional: Radiosondes and Pibals, AMMA special observations, Aircraft and ACARS data,
Surface observations, PAOBS, SATOB observations, SSM/I ocean surface wind speed, Scatterometer
winds

Satellite-radiance: TOVS radiances, Recalibrated MSU radiances, ATOVS radiances, GEOS radi-
ances, Aqua AIRS, AMSU-A, and AMSR-E data, MetOp TASI, AMSU-A, and MHS data, CHAMP /-
COSMIC GPS radio occultation data.
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0.2 Brazil case study
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Figure 1: Brazil dataset across space and elevation. Left: Density of coffee pro-
duction, as the average production divided by municipality area. Regions in green
account for the majority of production. Most production occurs in the south, how-
ever there are coffee producing regions also in the southern Amazon. Right: Dis-
tribution of coffee producing area, displayed across the average elevation of each
municipality. The greatest extent of coffee production occurs in municipalities with
around 900 m of elevation, but coffee is also produced in municipalities with a much
lower elevation, including a peak around 200 m. The range of typical elevations for
growing Arabica and Robusta are shown above the histogram.

0.2.1 An empirical model of production

Using the IBGE Brazilian coffee production estimates, combined with high resolution weather from the
CFSR reanalysis product, we estimate a physically-based statistical model of coffee production. The
model predicts yields using a nonlinear relationship with temperature and precipitation. We base our
model on Schlenker and Roberts (2009), and divide GDDs into three groups: beneficial growing degree-
days between 0°C and 33°C, killing degree-days above 33°C, and frost degree days below 0°C. We also
use the average minimum temperature, which appears to be more significant than frost degrees. This
kind of statistical relationship is based on the biological response of coffee to temperature, but puts
a “black box” around farmer responses and ecosystem and pest dynamics. If farmers are providing
sufficient irrigation and shade to coffee plants, the effect of high temperatures will be mitigated beyond
what biological models suggest on their own.

Calculating growing degree-days

Growing degree-days (GDDs) are calculated using a continuous sinusoidal fit to minimum and
maximum daily temperatures, as shown below:

The impacts of climate change on coffee: trouble brewing iv
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up to a maximum of an upper threshold (U.T.). As temperatures
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Figure 2: Histograms displaying the number of growing seasons with a given number
of frost degree-days, growing degree-days, and killing degree-days. The exponential
decays in frost and killing degree days are useful for capturing the impact of extreme
events. The broad range of growing degree-days represented in the center histogram
allows for accurate estimates of the coffee growth response.

We also include precipitation, as the total accumulated precipitation over the six months before harvest.
Precipitation is included as a quadratic, to capture the expectation that both too little precipitation and
too much precipitation are harmfully impact yields.

0.2.2 Optimal temperature range

Guzmén Martinez et al. (1999) suggest that 10°C is the appropriate base temperature for calculating
GDDs for coffee. We explore a large range of minimum and maximum temperatures for GDDs, seeking
the limits that provide the greatest predictive capacity. See Appendix 0.5.2 for predictive capacity of
a range of possible limits. We find that a minimum temperature of 0°C and a maximum temperature
of 33°C for beneficial GDDs is optimal. This means not only that all days over 0°C are estimated as
beneficial, but that higher temperatures up to 33°C are progressively more beneficial. A day above 33°C
is not immediately detrimental, but it has a progressively smaller benefit until it becomes negative, and
we find that temperatures over about 35°C are detrimental in Brazil.

The impacts of climate change on coffee: trouble brewing v
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0.2.3 Predictive periods

Coffee production is very sensitive to weather during flowering, and the period during which we correlate
weather with yields is important. To determine the optimal span of weather for predicting yields, we
try out many combinations of starting and ending months. The harvesting period in Brazil ends in
September, so we consider months starting with October to predict the yield in the next year. The
coefficients of models for each of these periods are shown in figure 3.

A few features are important in these results. In the top graph displaying coefficient values, areas in
the upper-left are gray, denoting that models that use only the months shortly preceding harvest do not
produce significant results. Second, we expect the effect of GDDs to be positive, KDDs negative, the
linear component of precipitation (precip) to be positive, and the quadratic component of it (precip2)
to be negative. This is confirmed for most date ranges, and we want to avoid regions that misestimate
these values due to noisy or minor effects. Finally, the t-values figures show the confidence in these
values, and are a measure of the statistical significance of the model as a whole. These values generally
decrease as the starting month becomes later.

Figure 4 shows the combined t-values for the GDD and KDD coefficients. The highest t-value is for
GDD and KDD values calculated just for January and February. The probably reflects a highly sensitive
period for the berry production. Nearly as high, and covering a six-month span, is December through
May. We will use this as our span for calculating weather impacts.

0.2.4 FEconometric model

The form of the statistical model is,

log yir = a; + vgit + kkit + iy + T + Yp3 + Py oy (1) + €t

Above and in the other models below, the observation variables and their corresponding effect estimating
coefficients are:

Var. Coeff.
Growing degree-days gy %
Killing degree-days  k;; K
Average minimum temperature  m; 1
Total precipitation (linear)  pj T

Total precipitation (quadratic)  p2 )

where i indexes municipalities, ¢ the years, and P; 4(;)(t) is a state-specific cubic trend to capture shifting
productive capacity. We aggregate weather from December to May, and use 0°C to 33°C as the limits
for computing growing degree-days.

Interpreting regression tables

Many of the results in this chapter are in the form of multiple regression tables. Each regression is
of the form,
Yi =+ P21+ -+ BrTr, + €

which describes the relationship between a dependent variable, y;, taking different values for each ith
observation, and a linear combination of independent variables, x; ;, ..., 2. The €; term represents
the remaining error that cannot be explained by the model. In addition, these models use “fixed-
effects”, which are parameters unique to each region, so that the model is effectively estimated by
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Scaled Coefficient Estimates

Scaled coefficients: - -
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Figure 3: Coefficients from estimating models with different month spans, and the
t-values intervals associated with each coefficient.

The top 118 municipalities in
harvest density were used.
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Figure 4: The sum of t-values across the GDD and KDD coefficients, for identifying
the most effective range.
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between them.

variable increases.

considering the effects of changes in the independent variables, rather underlying static differences

The regression tables are mean to be read in columns. The first column specifies the variable for
which an effect is reported, and the model columns specify the size of that effect. If a coefficient esti-
mated is 10, that means that the dependent variable increases by 10 for every unit the independent

The numbers directly below each effect and reported in parentheses are the values ’standard errors’,
a measure of the uncertainty of that value. If the standard error is less than half of the value, then
there is 95% confidence that the sign of the coefficient in question is correct. This corresponds to
the statistical significance of the estimate, and is denoted by asterisks (***).

THE EARTH INSTITUTE
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The results are shown below as a table of statistical coefficients. Table 1 displays the results across all

municipalities, and 2 is for the 118 municipalities with the greatest density of coffee harvesting.

Dependent variable:

Means Log Yields Harvested Hectares
(1) (2)
GDDs / 1000 2.946 0.152%** 72.869
(0.931) (0.050) (124.246)
KDDs / 1000 0.149 —2.806*** —2,197.369***
(0.146) (0.342) (555.055)
Avg. Min. 0.944 —0.091*** —25.0
(3.499) (0.018) (34.0)
Precip. (m) 1.421 0.347** —9.587
(0.719) (0.028) (64.092)
Precip.? (m) 2.538 —0.366*** —8.520
(2.439) (0.036) (84.618)
State cubic trends Yes Yes
Observations 43,165 43,185
R? 0.383 0.655
Adjusted R? 0.343 0.633
Residual Std. Error 0.535 (df = 40542)  4,300.446 (df = 40561)
Note: *p<0.1; **p<0.05; ***p<0.01

Table 1: Estimates for statistical models relating growing degree-days, killing
degree-days, average minimum temperature, and precipitation to the logarithm of

yields, and to harvested area, for all municipalities. Stars (

represent statistical

significance levels, showing that most coefficients appear to have a relationship with

production outputs.

0.2.5 Multilevel Brazil model

Next we extend the model to include “multilevel” effects. The multilevel model studies how the estimated
coefficients vary across other characteristics of the municipalities. In this case, we consider how the effect

The impacts of climate change on coffee: trouble brewing
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Dependent variable:

Log Yields Harvested Hectares
(1) (2)
GDDs / 1000 0.475%** 1,700.306*
(0.109) (976.997)
KDDs / 1000 —2.989** —23,179.330***
(1.423) (8,681.404)
Avg. Min. —0.183*** —290.009
(0.0183) (335.665)
Precip. (m) 0.441%** —1,168.520*
(0.076) (677.845)
Precip.? (m) —0.494*** 1,978.722**
(0.099) (854.580)
Observations 3,181 3,181
R? 0.320 0.485
Adjusted R? 0.290 0.462
Residual Std. Error (df = 3043) 0.364 14,412.800

Note:

Table 2:

*p<0.1; **p<0.05; ***p<0.01

Estimates for statistical models relating growing degree-days, killing

degree-days, average minimum temperature, and precipitation to the logarithm of
yields, and to harvested area, for the top 118 municipalities by production density.
Stars (***) represent statistical significance levels, showing that most coefficients
appear to have a relationship with production outputs.

The impacts of climate change on coffee: trouble brewing
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of GDDs, KDDs, and average minimum temperature vary with elevation. Elevation is both an important
determinant of coffee quality, and is a proxy for the variety of coffee grown: Brazil grows both Arabica
and Robusta coffees, but does not report their production separately (until recent years).

The multilevel relationship is that:

log Yir = o + Yigit + Kikir + pimi + Tipi + Vipy + €it
Vi = Yo + By Elevation; + 1 ;
ki = Ko + BrElevation; + 1y ;
i = po + BuElevation; + 1,
m; = 7o + PBrElevation; + 1y ;
Vi = Yo + By Elevation; + 0y ;

where the top line is the normal regression relationship, but with separate coefficients for each munic-
ipality . The remaining lines relates all municipality coefficients together according to their varying
elevations. The results are shown in table 3 and in a graphical form in figure 5.

Evolution in Elevation

‘800 Ado

Coefficient

-10 -

490D AaM

-20 -

-30 -

I I
0 500 1000 1500
Elevation (m)

Figure 5: The effect of an additional GDD and KDD as these vary by elevation.
As elevation increases, plants become more sensitive to temperatures. The effect of
GDDs increases, though very slightly. The harmful effects of KDDs increase quickly.

0.2.6 Yield estimates under a warmer climate

We can apply the production model to weather produced from climate change. As a proxy for climate
change, we estimate yields using historical weather data increased by 2°C. Precipitation values are left
unchanged, since they show an unclear trend. This change produces several effects: it increases the
number of GDDs benefiting yields, increases the number of KDDs harming yields, and increases average
minimum temperature. The resulting balance between these three impacts is not evident a priori. The

The impacts of climate change on coffee: trouble brewing xi
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Dependent variable:

Log Yields Harvested Hectares
(1) (2)
GDDs / 1000 0.208*** 40.303
(0.051) (130.508)
Elev. GDDs / 1000 0.001*** 2.110%**
(0.0002) (0.657)
KDDs / 1000 —6.106%** —4,600.562***
(0.516) (725.931)
Elev. KDDs / 1000 —0.016%** —17.054***
(0.002) (3.653)
Avg. Min. —0.183*** —25.750
(0.018) (34.334)
Elev. Avg. Min. —0.00000** —0.183
(0.00000) (0.183)
Precip. (m) 0.358*** —32.650
(0.030) (76.846)
Elev. Precip. (m) 0.0001 —0.164
(0.0001) (0.285)
Precip.2 (m) —0.391%** —10.825
(0.039) (98.941)
Elev. Precip.? (m) 0.0001 0.648*
(0.0001) (0.390)
Observations 42,141 42,161
R? 0.378 0.651
Adjusted R? 0.338 0.628
Residual Std. Error  0.538 (df = 39582)  4,282.486 (df = 39601)
Note: *p<0.1; **p<0.05; ***p<0.01

Table 3: The effects of GDDs, KDDs, and average minimum, as each varies by
elevation. While the estimates are not significant, they suggest increasing sensitivity
to temperature in the form of both GDDs and KDDs as elevation increases. All
municipalities in Brazil used.

The impacts of climate change on coffee: trouble brewing xii
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Figure 6: Growing degree day histograms, after an increase of 2°C.

figure below shows the distribution for municipality yields across Brazil, from observed data, and under
climate changed weather predictions.

As shown in figure 2.6, the observed yields show wide variation. The blue distribution is shifted to the
left, eliminating some of the most spectacular yields and lowering the average yield. The average yield
in the warmer experiment is about 80% of the original yields (see figure 7).
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Figure 7: Distribution of the proportional change in yields, with a mean yield 79%
of historical yields.

0.3 Global production

In this section, we estimate the a model like the one for Brazil for all countries. Using the intra-
year production estimates in the coffee database, we estimate the relationship between country yields
and weather. We use the temperature span of 0°C to 33°C for growing-degree days, as estimated for
Brazil.

The first estimate is exactly analogous to the Brazil estimate, in that a single coefficient is estimated across
all countries for the global average effect of GDDs, KDDs, frost degrees, and quadratic precipitation.
This is reported in table 4 and shown schematically in figure 8.

0.3.1 Hierarchical model framework

It is reasonable to expect different countries to have different effects from temperatures. We could
estimate each country independently, and this would be an “unpooled” model. However, we also want
the model for one country to inform, to an extent supported by the data, the model for another country.
To capture this, we will construct a “hierarchical model”, where each country’s sensitivity to temperature
will be drawn from a common distribution, simultaneously estimating each country’s parameters and the
distribution across all of them.

Furthermore, we allow varieties in different regions to operate differently, as supported by the data. For
example, where plentiful data supports a higher optimal growing temperature for Robusta, the model
should represent this. If very little data is available, the predicted response should by default conform to
an average for that region and variety. Finally, we want to incorporate higher resolution data where it
is available. The municipality data in Brazil informs the same common parameters as the Brazil-specific

The impacts of climate change on coffee: trouble brewing xiv
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Figure 8: Pooled model growing degree-day plot.
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Log Yield Production
GDD / 1000 0.238** 1,710.548
(0.119) (5,917.907)
KDD / 1000 —1.935 —3,955.098
(1.786) (43,378.870)
Frost Deg. —0.005 284.772
(0.008) (1,550.480)
Year Precip —3.454 707,932.900
(12.928) (483,967.400)
Year Precip? 14.494 —10,991, 768.000
(135.355) (6,955, 772.000)
FE Region, variety RegionVariety
Trends Y Y
Errors Region Region
Observations 1,945 1,945
R? 0.684 0.807
Adjusted R? 0.676 0.802
Residual Std. Error (df = 1896) 0.441 33,325.380

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 4: Growing degree day model, pooled across all countries.

country-level yield data.

We have developed a technique for allowing this kind of data-driven multiple levels of aggregation and
degrees of generalization, based on Bayesian Hierarchical Modeling (Gelman et al., 2014) and Inversion
Theory (Menke, 2012). Under this technique, each country and sub-country region has its own param-
eters, but the parameters are further modeled as being related to each other. The hierarchical model
is a direct extension of the statistical production model, which can be thought of as many different
production models combined together.

Derivation of the hierarchical modeling system

Formally, we want to allow each variety in each country to have its own model, consisting of
coefficients for growing degree-days, killing degree-days, average minimum temperature, and pre-
cipitation. The pooled model is as follows:

log yit = ai + B + Vgt + Kkie + dfie + TPt + VD% + €it
while the partially pooled model starts with the unpooled relationship,

log Yivt = @i + Bu + VivGit + Kivkit + Giv fit + TiwDit + VivDh + €t

Consider the GDD coefficient for country ¢ and variety v, 7;,. To partial pool across countries for a
given variety, this coefficient comes from a distribution of possible coefficient values, characterized

by an unknown mean and standard deviation for that variety:

Yiv ™ N('Vvv T’yu)

The impacts of climate change on coffee: trouble brewing xvi
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Further, we partially pool these ’hyperparameters’ as coming from a distribution across all vari-
eties:

Yo N(77 T’y)

We apply this for each parameter, v, s, ¢, 7, 1.

Estimating a partially-pooled model

Computationally, estimating this form of model can be very difficult. We construct an innovative
framework for doing this using Ordinary Least-Squares matrix algebra.

The Gaussian relationships above, such as 7, ~ N (74,75, ), are mathematically equivalent to the
OLS-style relationship,
Yiv = Yo + Tgamma, 1] with n~~ N(Ov ]-)

Under OLS, error terms are members of a Gaussian distribution, ¢; ~ N(0,02). We represent the
hyper-model for the 7 coefficient with the OLS-style relationships

Yiv = Yo T €iv
Ya = Ve T €a
"Yr:’}/c'f'er

and similarly for the other coefficients. It is then possible to rewrite these and the original unpooled
relationship to take the same form, with the same complete set of coefficients:

log yint = +Yivgit +--

logyive =2 0;1= +> 5, Viubitlju=iv +7%0+7%0+70 +--
0 = Zj ;0 + Zju Yjulju=1a ~Yal =70 =70 +--
0 = Zj a;0 +Zju7ju1ju=2a Yol =70 —7.0 +--
0 =350 +3 i Vulju=tr 70—l =70 +--
0 = Zj Ole +Zj u’)’juljuzlc 7’-}/&0777’07701 +---
0 = Ej ;0 + Z]» U0 +Yel + %0 —7v1 +---
0 =350 + 22, w0 +Y% 0+l =7l +---

The first line is the start of the original model to be estimated. The second line re-writes this with
more systematically, and in such a way that “constant” terms can be set to zero for fictional obser-
vations. The remaining lines are fictional observations added to estimate the entire model.

We have built this approach into a tool for the R statistical package which is available at https:
//github.com/eicoffee/hierlm.

Figure 9 shows the effects of partial pooling at different levels. As the level of pooling increases, the
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range of country-specific values is brought closer together.
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Figure 9: Distribution across countries of values for the GDD and KDD coefficients
for different levels of pooling.

The results are shown in table 5. Only the hyperparameter means are shown. Each statistically significant
country coefficient is listed in Appendix 0.5.5, and the remainder are in an online table at http://
eicoffee.net/. The first column uses only observations at the country level. The second column places
a prior on the Brazil coefficients, conforming to the Brazil municipality estimates above. These more-
precise estimates then inform the global distribution for each coefficient, which in turn informs all of the
countries, including Brazil.

0.3.2 Humidity

Humidity can have varying effects on coffee. The plant needs reasonably high levels of humidity during
the flowering season to avoid floral atrophy, but humidity is also crucial to the development of coffee
rust. For these reasons, the timing of high humidity levels appears to be particularly important. Here
we see how Arabica coffee yields respond to a one-standard deviation increase in humidity during each
particular month in the year leading up to harvest. Robusta appears to be less sensitive to humidity
effects than Arabica.

Humidity data is from the NCEP CFSR. The reanalysis data is available at 1/12° resolution globally,
which is then aggregated to the country-month level using weights from the coffee database. The values
are reported as specific humidity at 6 hour intervals, which here is averaged over each month for the year
prior to harvest.
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Dependent variable:

Countries only

(1) 2)
GDDs / 1000 (Combined) 0.079 0.217**
(0.123) (0.095)
GDDs / 1000 (Arabica) 0.131 0.229**
(0.112) (0.103)
GDDs / 1000 (Robusta) 0.161 0.401***
(0.152) (0.133)
KDDs / 1000 (Combined) —0.110 —1.801%**
(0.543) (0.323)
KDDs / 1000 (Arabica) —0.082 —1.731%**
(0.556) (0.356)
KDDs / 1000 (Robusta) —0.157 —1.766***
(0.543) (0.348)
Avg. Min. (Combined) —0.077 —0.108
(6.344) (6.248)
Avg. Min. (Arabica) —0.134 —0.152
(7.147) (7.164)
Avg. Min. (Robusta) —0.114 —0.163
(8.964) (8.985)
Precip. (Combined) —4.285 —2.124
(5.792) (2.390)
Precip. (Arabica) —1.689 —0.156
(6.058) (3.254)
Precip. (Robusta) —1.565 —0.279
(5.971) (3.403)
Precip.?(Combined) 5.340 —5.530
(82.317) (28.605)
Precip.?(Arabica) 21.749 11.218
(79.174) (37.825)
Precip.?(Robusta) 12.794 0.264
(88.198) (42.271)
Observations 3,011 3,016
R? 0.902 0.903
Adjusted R? 0.885 0.886
Residual Std. Error 0.335 (df = 2561) 0.336 (df = 2566)

F Statistic

52.575*** (df = 450; 2561)  52.962*** (df = 450; 2566)

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 5: Hierarchical model results, for the mean of the global distribution of coef-
ficients for each parameter and each variety.
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Figure 10: Arabica humidity effects. Only the humidity one and seven months
before harvest are significant at 95% confidence.
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Monthly effects of humidity are shown in figure 10, and the table of coefficients is in Appendix 0.5.3.
The coefficients result from the following model:

12
log(y) = F(T) + > Bmtm + he(t) + e + 7 + €at

m=1

where f(T) is a non-linear function of temperature, estimated using the number of days spent in 1-degree
C temperature bins, h.(t) is a country-specific linear time trend, o, and 7; are country and year fixed-
effects. Each §,, is the effect of specific humidity m months prior to the beginning of harvest on log
yield.

0.3.3 Interpreting empirical model results

Climate change impacts coffee production through many different channels. Foremost, climate change
reflects changes in temperature and patterns of precipitation— that is, changes in climate mean changes
in weather. The models above estimate the relationship between changes in weather and changes in
yields, and then extrapolate those changes to their responses under climate change.

There are important differences between unexpected weather shocks and prolonged climate changes.
Coffee farming will find ways to adapt to repeated shocks of higher temperatures, and we hope our
estimates provide an upper bound on the production impacts of climate change. However, the evidence
for such adaptation is limited. Burke and Emerick (2012) study maize in the United States, and while
there is a clear potential for adaptation to warmer temperatures, they find almost no evidence of it. The
reasons for this empirical result are unclear.

The effects that we measure of temperature on yields cannot be unambiguously interpreted as the biolog-
ical response to temperatures. Temperatures could be simultaneously affecting other species that then
affect coffee. For example, the harmful affects of average minimum temperature could reflect a greater
capacity for coffee rust or the coffee berry borer to proliferate in these warmer years. It could also reflect
decreased activity on the part of farmers on hot days.

Our results should be taken as representing a holistic effect as it has occurred in the past. The extent to
which it will occur in the future may be up to us.

0.4 Pest modeling results

0.4.1 A rust model

We make a number of simplifications to study the fungus outbreaks. First, we will only consider the
fungus’s interaction with the host plant, even though it has been found to utilize other plants for different
stages of its growth cycle. Secondly, we assume that the only factors influencing it spread are temperature
and the health of the host plant, thereby ignoring wind and rain impacts that are also known to be
important (Ferreira and Boley, 1991). Similarly ignored are higher order effects from the application
of fungicide, where fungicide can also impact some flora and fauna that regulate the fungus, leading to
potentially unpredictable disruptions in the natural system.

The model is initialized as a two-dimensional grid of farm space, each grid cell having a certain probability
of an appearance of a fungal outbreak. For each time-step, chosen to be one month after examining the
reproductive cycle of coffee rust, the outbreak will begin to increase in size as a function of both its
current size, the temperature, the amount of host plants available and spread to neighboring grid-cells.
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The temperature used in the model was obtained from surface temperature Reanalysis Data from the
National Center of Atmospheric Research, spatially averaged over the area of Guatemala (without ocean
cells) and temporally averaged to each month (NCAR, 2015). A time series of these average temperatures
is shown in Figure 11, left. Here, one can note a relatively consistent seasonal amplitude of “2.5°C around
a mean of "22°C, with a slight upwards skew.

Guatemala Monthly Average Temperature
27 T T T T

T T Monthly Temperature Correlations

Month

Temperature, degrees Caisius

1 I 1 1

1

fags 1950 1960 1970 1950 1930 2000 2010 2020 1 2 ) 0 0 1R
Time, year Month

Figure 11: Left: Timeseries of temperatures. Right: Autocorrelation of monthly
temperature.

The high level of correlation between months requires that the temperature selected in each monthly time
step depend on the temperature in the previous month (see figure 11, right). In particular, the summer
months are highly correlated, reaching correlations of 0.8 with the previous month in some cases. To
account for this, the model is set up to draw a random season from the 67-year time series, employing
a three month time series corresponding to an instance of summer, fall, winter or spring, depending on
which is needed.

Our basic growth equation can be described by the following equation, with the basic assumption being
that higher temperatures increase the growth rate of the fungus (at least at the temperatures seen in
Guatemala).

Nip1 = NyeriTe/Te

where N is the population of a particular grid cell, r; is the initial growth rate, T} is the temperature at
that specific time, T, is the average temperature (over all months). Normally, the quantification of the
growth rate is usually conducted with a consideration of both the daily maximum and daily minimum
temperature (Magrath, 2014). However this was simplified for inclusion in our model.

When an additional population of fungus is created in subsequent time steps, it is distributed among
the original and nearby grid-cells proportional to the health of the host plant in the new grid cell, the
population of the source grid-cell and a multiplicative term similar to the prior growth equation. The
maximum fungus population for each grid cell is 1, representing 100% infection of the host plant.

The disturbance of each grid-cell is also be subject to density-dependent pressure from predators, in this
case the farmer spraying fungicide. Once a particular grid cell reaches a certain percentage of infection
it is detected by the farmer. Detected, the population is decreased by a certain fraction, through the
application of the fungicide. In addition, the fungus population will also decrease at a rate proportional
to its current population and the relative health of the host species, independent of temperature.

Niyj1 = N, — Ny(F — 1)

where F is the percentage of available host plants for the fungus to grow on.
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0.4.2 Experiments and results

To evaluate how temperature affects the spread of pests, experiments with three temperature scenarios
were run. The first one uses each time step temperature (month) from the historical seasonal data
for the region. The other two temperature scenarios considered global warming, one where the mean
temperature was increased by 2°C and the other by 4°C. Those three temperature scenarios were run
under two pest control conditions, the first one without any kind of pest control and the second one with
a farmer’s control by using fungicide that eliminated a fraction of the fungus when detected.

0.4.3 Historical temperature data without pest control

10"
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103}
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10° 10! 102 10°
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Figure 12: Historical temperature data without pest control. Left: Histogram of
outbreak sizes. Right: Log-Log Plot of outbreak sizes.

We set the ‘infected threshold’ to about 0.3, from the simple fact that we found several instances in
which leaves about 1/3 covered in coffee rust where considered ‘heavily infected’. In figure 12 we have
plotted the distribution of outbreak sizes, counting each heavily infected grid-cell at each time step.
Please note that as we utilized a 30 by 30 grid cell, complete infection can be represented by a score of
900. Therefore, 490, the largest event, signifies that 54% of the crop is heavily infected.

The Log-Log result, though resembling a power law from 100 on, demonstrates some inconsistent behavior
in smaller events. Indeed, in the histogram shelves can be observed where lower values have relatively
the same probability. With no warming, the most common event is between 0 — 17, or between 0 and
2% of the crop (though this refers to a single month, not a harvest cycle). The largest event, at 54%
of the crop is actually lower than the actual 70% loss in Guatemala in 2012, though there was not an
indication of how this figure was calculated. Nevertheless, the model predicts scenarios where the fungus
infects over 30% (300 sites) of the field.

Figure 13 shows the time series of the previous figure in months. It is clear that the system can be
entrenched within certain domain (i.e., large or small events) for many years. As the behavior between
1750 and 2000, a 21-year period, consistently shows some of the highest outbreaks, while still containing
intervening low events. This is possibly because the growth of fungus and plant, which are both tied to
temperature, sometimes became more synchronous. However, this cannot be determined outright, and
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Figure 13: Left: Time series of outbreak sizes by month. Right: Time series of
outbreak sizes by year.

thus for future study we might want to run for more time steps, to understand more fully the nature of
this large- scale periodicity.

On smaller scales, it can also be noted that many of the largest events come directly after a period of
relative calm, as the host plant has had a chance to regain health and provide much more nourishment to
the attacking fungus. This small scale rebound, can be seen with more detail. Though the rapid up and
down movement can be shown on a scale of a few months, there always seems to be a larger periodicity
on the scale of a few years; however, the randomness in the system makes it difficult to conclude anything
concrete.

0.4.4 Historical temperature data with pest control

Next, we implemented the farmer control, where obvious pest presence would immediately be sprayed
with a fungicide and reduced to a fraction of its value in the next month. This fungicide and the necessary
training to use it correctly may currently be absent within the poorer farms in the area. Thus, this allows
us to see how implementation might change the situation in the future. In Figure 14, the distribution
has a much smaller mean and median than the without the pest control measures. We note a stronger
power law relationship, though like the last iteration, it is slightly concave down. This suggests that
moderate events are marginally more likely than they would have been. However, the histogram might
be slightly skewed by a larger prevalence of zero events. Additionally, one can note a larger spread than
the previous model run for lower probability events.

Unexpectedly, the largest event, 643, signifying about 77% of the crop, is much higher than the previous
iteration. This suggests that though fungicide keeps the fungus levels low for the average month, the
healthy status of the host plant will make it so the correct temperature conditions or perturbation can
cause a huge event, even before the farmer can react (here at a 1 month lag). This is very reminiscent
of real world pest control experiences, where application can have unforeseen consequences, such as
diminishing the population of a pest predator, and thus upsetting the natural structure of the system
and allowing a pest to flourish later (Modern Farmer, 2014). However, catastrophic losses at a few points
do not offset the considerable gains shown across the histogram.

The impacts of climate change on coffee: trouble brewing xXxXiv



THE EARTH INSTITUTE
COLUMBIA UNIVERSITY

2000
10"
1500
102} Xex
°
2
1000 g
o
O
&= X
3 XK IBBDOMNRNK X X
10 F XX XX XEMOMNK X KX X
500
X XA N SRR > XX X
10* -
0 . . . . 10° 10* 10° 10°
0 100 200 300 400 500 600 700

sizes

Figure 14: Historical temperature data with pest control. Left: Histogram of
outbreak sizes. Right: Log-Log Plot of outbreak sizes.

Nevertheless, this line of thinking is further corroborated by figure 15, where decent periods of little
activity are punctuated by huge events, a common feature in nonlinear spatial systems. However, when
zoomed in to a period of 10 years, one can note the similarity between the control and non- control
scenarios, where the lower bound in the control situation (within inter-month cycles) is replaced with
0.
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Figure 15: Left: Time series of outbreak sizes by month. Right: Time series of
outbreak sizes by year.
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0.4.5 2°C global warming temperature data without pest control

For the next run, we linearly increased the temperature of each month by 2 degrees, in order to represent
possible regional warming over the next century. Increasing the temperatures to above normal, and thus
often increasing the ability of the fungus to reproduce, causes the histogram of outbreak sizes to shift
rightward. The log-log plot, while showing linear behavior for the right tail of the distribution, mimics
this change. In an average month 10% of the crop is considered heavily infected, with the tail hitting
about 75% of the crop as a maximum value. The time series (Figure 17) shows very few events with
absolutely no fungus though the behavior in terms of both large-scale and small-scale periodicities does
not seem to be drastically different.
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Figure 16: 2°C global warming temperature data without pest control. Left: His-
togram of outbreak sizes. Right: Log-Log Plot of outbreak sizes.
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Figure 17: Left: Time series of outbreak sizes by month. Right: Time series of
outbreak sizes by year.
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0.4.6 2°C global warming temperature data with pest control

The addition of pest controls to the warmed scenario has a similar effect as we have noted in the previous
iteration. The distribution begins to resemble a power law, however here with a slightly thinner tail.
Nevertheless, even in the warmed environment the measures do a reasonable job of controlling the pests,
with levels far below the untreated, cooler scenario. The Log-log plot, is however slightly more concave
than the previous scenario with pest control.
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Figure 18: 2°C global warming temperature data with pest control. Left: His-
togram of outbreak sizes. Right: Log-Log Plot of outbreak sizes.
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Figure 19: Left: Time series of outbreak sizes by month. Right: Time series of
outbreak sizes by year.

Results for a warming of 4°C are included in Appendix 0.4.7. Under these conditions and without
pesticide, the health of the crop is so poor that it cannot maintain a full outbreak. Even with pesticide,
it is impossible to full contain the disease.
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0.4.7 Additional pest control results
4°C global warming temperature data without pest control

With 4°C of warming, the distribution becomes almost completely normal, continuing to move right,
though with a smaller right tail. Even with a huge amount of warming, there were no instances above
600 or 66% of the crop. This suggests that with the average monthly infection around 20%, the plants
are not healthy enough to sustain a super event like the size of one previously seen. This absolute limit
does little to help the predictability on short time scales however.
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Figure 20: Results for 4°C warming without pest control.

4°C global warming temperature data with pest control

4°C of warming begins to offset the ability of fungicides to control the fungus population, the highest
values in the histogram moves away from zero, shown by the concavity of the Log-log plot, as the curve
continues to be thicker in areas than it was with less warming. The time series, as well as the other plots
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itself begin to more resemble the model runs in uncontrolled but cooler environments, with the highest
values still not going higher than 70%.

Histogram of outbreak sizes and Log-log plot of outbreak sizes
450

10"

400
350
300

IOAZ x 2
250 o x x| XK

200

frequencies

150

102
100

50

0

0 500 600 700 10 . .
10° 10* 10% 10°
sizes

Time series of outbreak sizes
700

450

600 ] 400 |
350+ E
500
300
250

200 -

150+

100+

50+

b \meh

1500 2000 2500 o

Figure 21: Results for 4°C warming with pest control.

0.4.8 Discussion

Throughout the drafting and modeling process, we made many other simplifications. We ignored rain
and wind as possible spreading agents, instead opting for a random approach. We chose significant
parameters such as our time step through very simplified observations of the fungus. We ignored the
vegetation cycle (as Guatemala has a very defined wet and dry season which must affect plant growth),
though this might be somewhat mitigated by the fact that we tied temperature to the growth of the host
plant. We also made considerable simplifying assumptions about the qualities of fungicide application
and fungus growth and spread.

Nevertheless, we believe that our results in the change of distribution are representative of what might
occur in the real world, given a particular coffee field. We have noted that warming induces a rightward
shift in event distribution. The subsequent health decline of the plants may inhibit huge shocks to the
system, as the conditions are not ideal for a full fungus takeover. Pest control, while curtailing the
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infection of an average month can lead to thicker tails and larger rare events. This is possibly because
plants are kept at a healthier level, an ideal condition for a quick fungus take over and a drawback of an
artificially controlled environment. Additionally, pest control appears to be efficient at compensating for
the increased fungus growth rates caused by warming, as even in the 4°C warmer environment, it is able
to bring the distribution back to the less disastrous approximate power law, albeit with a mode higher
than zero. In the future, under the extreme scenario, it is very possible that some sort of artificial control
will be necessary to continue to grow coffee in this region. This will possibly bring more complications
and unpredictable dynamics that we cannot comment on with such a simple model.

0.5 Extra production analysis

0.5.1 Inputs to the ENSO analysis

Our projection is based on the most recent consensus projection of the NINO 3.4 index of ENSO, from
International Research Institute for Climate and Society (2015). We try to apply reasonable values to
the other indices, using the negative of NINO 3.4 for SOI, given its —0.6 correlation with NINO 3.4; a
zero value for NAQO, given its rapid shifts; and constant extrapolations for PDO and AMO at their most
recent value, given the slow shifts in these signals.

Projecting these signals onto the principal component axes gives loadings of 1.3, 3.3, and 1.9, for the
three components respectively.

To account for any spurious effect of our decision-making process, we estimate the values for 2014-15 as
well, and report the difference.

0.5.2 Selecting temperature limits
0.5.3 Humidity

0.5.4 Harvest month effects

Figure 22 shows the estimated “effect” of harvesting in a given month on yields, from 1962 to 2011,
after accounting for country-specific and monthly effects. The gradual increase reflects improvements in
coffee production technology, but this increase is not without large shocks. An increase in yields between
1985 and 1990 was followed by a decrease and then another period of increased yields. Countries that
harvest in different months also show different fortunes, with the greatest yields to countries that harvest
in January and the lowest to those that harvest in February. Since the only country that harvests in
January but not February is Colombia, this probably reflects the difference between Colombia yields and
yields in other February-harvesting countries.

0.5.5 Hierarchical model coefficients

Only statistically-significant coefficients are listed below. The remaining are available online at http:
//eicoffee.net/.
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Figure 22: Monthly harvesting effects. Each point on this curve represents the
difference in yields predicted by harvesting in a given month, according to coffee
harvest calendars, after accounting for country-specific and month effects. Uses
calendars from https://www.sweetmarias.com/coffee.prod.timetable.php
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Low \High 28 29 30 31 32 33 34
-4 87.4211 87.4289  87.3933
-3

-2 87.4290

-1

0 87.2986 87.4213 87.4290 87.3934
1 87.4290

2 87.4212  87.4289  87.3933
3 87.4288

4 87.2983 87.4210 87.4286

5 87.0758 87.2979  87.4206

6 87.2978  87.4205 87.4281

7 87.0755 87.2978  87.4204

8 87.2981

9 87.0749 87.2979  87.4199

10 86.7490 87.0737  87.2975

11 87.0729 87.2975 87.4182

12 86.7398 87.0700  87.2954

13

14

15 86.6988 87.0369  87.2645

Table 6: F-statistics for a growing degree-day and killing degree-day model of coffee
production, across all countries. The highest F-stats use a maximum temperature
of 30°C and a minimum temperature between -3°C and 1 °C.

Dependent variable:

Countries only

(1) 2)
GDDs / 1000, Liberia (Robusta) 0.515** 0.743***
(0.213) (0.202)
GDDs / 1000, Gabon (Robusta) 0.223 0.448**
(0.215) (0.204)
GDDs / 1000, Yemen (Arabica) 0.274 0.368"*
(0.189) (0.183)
GDDs / 1000, Benin (Robusta) 0.146 0.409**
(0.221) (0.207)
GDDs / 1000, Cuba (Arabica) 0.222 0.322*
(0.194) (0.189)
GDDs / 1000, Angola (Robusta) 0.121 0.354*
(0.217) (0.205)
GDDs / 1000, Malaysia (Robusta) 0.266 0.495**
(0.220) (0.209)
GDDs / 1000, Brazil (Combined) 0.079 0.158***
(0.208) (0.052)
GDDs / 1000, Guinea (Robusta) 0.356* 0.603***
(0.199) (0.185)
GDDs / 1000, Nigeria (Robusta) 0.377* 0.659***
(0.212) (0.197)
GDDs / 1000, Suriname (Combined) 0.346* 0.484**
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Dependent variable:

Countries only

(1) 2)
(0.204) (0.189)
GDDs / 1000, Zambia (Arabica) 0.217 0.300*
(0.178) (0.173)
GDDs / 1000, Paraguay (Arabica) 0.248 0.405***
(0.165) (0.156)
GDDs / 1000, Guyana (Robusta) 0.140 0.374*
(0.223) (0.211)
GDDs / 1000, Congo (Robusta) 0.145 0.382*
(0.215) (0.203)
KDDs / 1000, Cambodia (Combined) —0.112 —1.798***
(0.567) (0.363)
KDDs / 1000, Ethiopia (Arabica) —0.082 —1.731%**
(0.581) (0.394)
KDDs / 1000, Cameroon (Combined) —0.111 —1.801***
(0.568) (0.364)
KDDs / 1000, Ghana (Robusta) —0.180 —1.787***
(0.568) (0.386)
KDDs / 1000, Saudi.Arabia (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Guatemala (Arabica) —0.082 —1.731%**
(0.581) (0.394)
KDDs / 1000, Guatemala (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Dominica (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Liberia (Robusta) —0.123 —1.732%**
(0.568) (0.386)
KDDs / 1000, Gabon (Robusta) —0.155 —1.764*
(0.568) (0.386)
KDDs / 1000, Gabon (Combined) —0.110 —1.800%**
(0.568) (0.364)
KDDs / 1000, Yemen (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Yemen (Arabica) —0.078 —1.728***
(0.581) (0.394)
KDDs / 1000, Jamaica (Arabica) —0.082 —1.731%**
(0.581) (0.394)
KDDs / 1000, Samoa (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Kenya (Arabica) —0.082 —1.731%**
(0.581) (0.394)
KDDs / 1000, Kenya (Combined) —0.114 —1.804***
(0.568) (0.364)
KDDs / 1000, India (Combined) ~0.110 —1.801%
(0.568) (0.364)
KDDs / 1000, Saint.Lucia (Combined) —0.110 —1.801***
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Dependent variable:

Countries only

(1) 2)
(0.568) (0.364)
KDDs / 1000, Rwanda (Arabica) —0.082 —1.731%**
(0.581) (0.394)
KDDs / 1000, Peru (Arabica) —0.082 —1.731%**
(0.581) (0.394)
KDDs / 1000, Vanuatu (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Malawi (Arabica) —0.082 —1.731%**
(0.581) (0.394)
KDDs / 1000, Benin (Robusta) —0.156 —1.754***
(0.565) (0.384)
KDDs / 1000, Benin (Combined) —0.114 — 1773
(0.559) (0.358)
KDDs / 1000, Cuba (Arabica) —0.076 —1.725%**
(0.581) (0.394)
KDDs / 1000, Togo (Robusta) —0.244 —1.827***
(0.560) (0.380)
KDDs / 1000, Tonga (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Indonesia (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Mauritius (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Angola (Combined) —0.109 —1.799***
(0.568) (0.364)
KDDs / 1000, Angola (Robusta) —0.159 —1.768***
(0.568) (0.386)
KDDs / 1000, Trinidad.and.Tobago (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Nicaragua (Arabica) —0.084 —1.733***
(0.581) (0.394)
KDDs / 1000, Malaysia (Robusta) —0.159 —1.768***
(0.568) (0.386)
KDDs / 1000, Mozambique (Combined) —0.111 —1.801***
(0.568) (0.364)
KDDs / 1000, Uganda (Combined) —0.111 —1.801***
(0.568) (0.364)
KDDs / 1000, Brazil (Combined) —0.110 —1.971%**
(0.568) (0.309)
KDDs / 1000, Guinea (Robusta) —0.101 —1.703***
(0.566) (0.384)
KDDs / 1000, Panama (Arabica) —0.082 —1.731%**
(0.581) (0.394)
KDDs / 1000, Costa.Rica (Arabica) —0.081 —1.731%**
(0.581) (0.394)
KDDs / 1000, Nigeria (Robusta) —0.085 —1.674%**
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Dependent variable:

Countries only

(1) 2)
(0.562) (0.382)
KDDs / 1000, Ecuador (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, El.Salvador (Arabica) —0.081 —1.729%**
(0.581) (0.393)
KDDs / 1000, Puerto.Rico (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Thailand (Combined) —0.109 —1.796***
(0.567) (0.363)
KDDs / 1000, Thailand (Robusta) —0.165 —1.773%**
(0.568) (0.386)
KDDs / 1000, Haiti (Arabica) —0.087 —1.731
(0.580) (0.393)
KDDs / 1000, Belize (Combined) —0.110 —1.799***
(0.568) (0.364)
KDDs / 1000, Sierra.Leone (Robusta) —0.239 —1.835***
(0.563) (0.383)
KDDs / 1000, Philippines (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Timor.Leste (Combined) —0.109 —1.799***
(0.568) (0.364)
KDDs / 1000, Colombia (Arabica) —0.082 —1.731%**
(0.581) (0.394)
KDDs / 1000, Burundi (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Burundi (Arabica) —0.082 —1.731%**
(0.581) (0.394)
KDDs / 1000, Fiji (Combined) —0.110 —1.801%**
(0.568) (0.364)
KDDs / 1000, Madagascar (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Nepal (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Suriname (Combined) —0.089 —1.779***
(0.568) (0.364)
KDDs / 1000, Zambia (Arabica) —0.082 —1.731%**
(0.581) (0.394)
KDDs / 1000, Papua.New.Guinea (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Zimbabwe (Arabica) —0.094 —1.742%**
(0.581) (0.393)
KDDs / 1000, New.Caledonia (Combined) —0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, New.Caledonia (Arabica) —0.082 —1.731%**
(0.581) (0.394)
KDDs / 1000, Paraguay (Arabica) —0.043 —1.660***
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Dependent variable:

Countries only

(1) 2)
(0.571) (0.387)
KDDs / 1000, Guyana (Robusta) —0.157 —1.766***
(0.568) (0.386)
KDDs / 1000, Guyana (Arabica) —0.081 —1.730***
(0.581) (0.394)
KDDs / 1000, Guyana (Combined) —0.111 —1.801%**
(0.568) (0.364)
KDDs / 1000, Honduras (Arabica) —0.084 —1.733***
(0.581) (0.394)
KDDs / 1000, Myanmar (Combined) —0.110 —1.800***
(0.568) (0.364)
KDDs / 1000, Mexico (Combined) ~0.110 —1.801***
(0.568) (0.364)
KDDs / 1000, Congo (Robusta) —0.165 —1.773%**
(0.568) (0.386)
KDDs / 1000, Congo (Combined) —0.111 —1.800***
(0.568) (0.364)
KDDs / 1000, Sri.Lanka (Combined) —0.108 —1.793***
(0.567) (0.363)
KDDs / 1000, Comoros (Combined) —0.110 —1.801***
(0.568) (0.364)
Avg. Min., Liberia (Robusta) —0.817*** —0.873***
(0.141) (0.140)
Avg. Min., Gabon (Robusta) —0.642%** —0.714***
(0.181) (0.180)
Avg. Min., Yemen (Combined) 0.402* 0.369*
(0.208) (0.207)
Avg. Min., Jamaica (Arabica) 0.297** 0.269**
(0.117) (0.116)
Avg. Min., Kenya (Arabica) —1.325%** —1.369***
(0.288) (0.288)
Avg. Min., Kenya (Combined) —0.755*** —0.794***
(0.156) (0.154)
Avg. Min., Malawi (Arabica) —0.255% —0.288**
(0.141) (0.140)
Avg. Min., Angola (Combined) —0.367* —0.400**
(0.199) (0.198)
Avg. Min., Angola (Robusta) 0.218** 0.178*
(0.110) (0.108)
Avg. Min., Malaysia (Robusta) 2,766 2.680***
(0.164) (0.162)
Avg. Min., Brazil (Combined) —0.077 —0.091***
(34.091) (0.020)
Avg. Min., Guinea (Robusta) 0.329*** 0.300**
(0.125) (0.124)
Avg. Min., El.Salvador (Arabica) —0.525%** —0.526***
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Dependent variable:

Countries only

(1) (2)
(0.145) (0.145)
Avg. Min., Sierra.Leone (Robusta) —1.196*** —1.197***
(0.147) (0.147)
Avg. Min., Suriname (Combined) —1.532%** —1.559***
(0.174) (0.172)
Avg. Min., Zambia (Arabica) —0.204 —0.237*
(0.125) (0.123)
Avg. Min., Congo (Robusta) —1.389*** —1.441%**
(0.155) (0.154)
Avg. Min., Sri.Lanka (Combined) —0.426*** —0.402***
(0.140) (0.139)
Precip., Brazil (Combined) —4.285 0.347***
(6.691) (0.030)
Precip., Suriname (Combined) —12.378* —10.271**
(6.552) (4.007)
Precip.?, Brazil (Combined) 5.340 0.366***
(88.871) (0.039)
Observations 3,011 3,016
R? 0.902 0.903
Adjusted R? 0.885 0.886
Residual Std. Error 0.335 (df = 2561) 0.336 (df = 2566)
F Statistic 52,575 (df = 450; 2561)  52.962*** (df = 450; 2566)
Note: *p<0.1; **p<0.05; ***p<0.01
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Table 7: Humidity Effects

Dependent variable:

Month prior to harvest log(yield)
1 —8.562
(12.703)
2 17.386
(12.509)
3 —2.607
(13.406)
4 —23.317*
(12.756)
5 4.781
(13.223)
6 —30.035**
(12.008)
7 15.021
(14.797)
8 —14.813
(16.496)
9 19.024
(16.429)
10 —6.111
(17.747)
11 35.636*
(18.228)
12 —33.730**
(15.444)
Observations 738
R? 0.895
Adjusted R? 0.881

Residual Std. Error
F Statistic

0.191 (df = 653)

66.164* (df = 84; 653)

Note:

*p<0.1; **p<0.05; ***p<0.01
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0.6 Suitability analysis details

Given any environmental condition, we can use Bayes rule to provide a empirical estimate of suitability.
We write Bayes rule as an odds ratio:

p(&|coffee = 1)
p(7)

p(coffee = 1|%)

p(coffee = 1)

The left-hand-side describes the ratio of the probability of coffee in a region given the observed conditions,
to the probability of coffee generally. If this is greater than 1, the area is more suitable than the average
location.

To calculate the coffee probability, the right-hand-side describes a ratio between the distribution of a
property across harvested areas, and the distribution of that property across the entire region. As
conditioning data, we use soil properties, climatic properties, elevation, and latitude.

Climatic and soil properties are not mutually independent, complicating our ability to calculate this
ratio given the large number of properties we have available. We use the statistical “copulas” technique
to disentangle the marginal distributions of each property from their dependence structure (Nelsen,
2013).

0.6.1 Comparing MaxEnt and Bayesian odds techniques

Both the MaxEnt and Bayesian techniques are sophisticated and represent the uncertainty of their result
with high integrity. Table 9 provides a comparison of the main strengths and weaknesses of the two
techniques.

MaxEnt

Bayesian Odds

Form of observation data

Use of environmental data

Use of constraints

Result uncertainty
Key simplification

A set of point locations, for where
the species was observed

Mean and other moments of
the environmental data are used,
based on the constraints chosen
Constraints are central to the
technique

Fully maintained

Only chosen constraints describe
the distribution of environmental
indicators

A weighted grid of presence
across all space

The full distribution of values for
any environmental indicators are
included

Constraints are not used

Fully maintained

Dependence between indicators is
assumed to be captured by a rank
correlation.

Table 9: Comparison between the features of MaxEnt and Bayesian odds methods.

MaxEnt has been used to study species suitability for a long time, and is designed for situations where
a species is observed only at particular locations. The spatial coffee database gives us a much clearer
picture of where coffee currently is grown and is not.

MaxEnt is most appropriate when there are underlying motivations for the constraints that are used as
a central part of the method: for example, a common constraint is to require that that the mean and
variance of temperatures for observed coffee match the mean and variance for future coffee. Unfortunately,
MaxEnt constraints are often chosen arbitrarily and without a physical foundation. The Bayesian odds
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approach incorporates the entire distribution of environmental indicator values where coffee is grown,
rather than a small collection of moments.

0.6.2 Baseline Bayesian odds map

The result of the Bayesian odds procedure for current coffee suitability is shown in figure 23. Dark green
regions (high suitability) are rare, unlike the analyses by GAEZ and Bunn et al.. While they typically
match areas of actual coffee growth (in Brazil, Colombia, and Central America), there are several places
where there are large mismatches (in North Africa and Western India). While this provides a high
resolution and data-driven map, it cannot stand alone.

S

Arabica Bayesian Odds Suitability

) e

B Urban Protected I M Suitable (low to high)

Figure 23: Suitability for Arabica coffee (top) and Robusta coffee (bottom). Colors
range from red (slight suitability odds) to yellow to green (very strong suitabil-
ity odds). The map also shows protected areas (cyan), urban areas (purple), and
managed areas (faded).

0.6.3 Use of Copulas in the Bayesian odds measure

We use a Gaussian copula, which captures the correlation between the various properties.

To incorporate a new property, we determine its unweighted distribution across the entire region from
30°N to 30°S. Then we create a weighted distribution, with properties from the region weighted by har-
vested area. Finally, we calculate Spearman’s rho, between the new property and all existing properties,
to represent the dependence structure.’

Then, to determine p(Z) and p(&|coffee = 1) for a given location, we reverse the normal copula process.
In this case, we determine the span in @-space (rank space) that a small region of Z-space represents
(Z + Az), using each marginal distribution and the probability integral transform. If there is very little

IEither Spearman’s rho and Kendall’s tau can be used in this process. We use Spearman’s rho because it has a more
linear relationship with the Gaussian copula’s correlation matrix.

The impacts of climate change on coffee: trouble brewing x1



THE EARTH INSTITUTE
COLUMBIA UNIVERSITY

mass in the marginal distribution in the region of x;, the corresponding Aw; will be small. Then we
evaluate
/ cgauss
A

Above, cg"mss is the Gaussian copula, which can be written as,

, ) 3 L(up)\ " > (uy)
Gauss . —1 .
cp™ (u) = exp | —= ' : . (R — I) . :
Vdet R 2 : :

‘ & (uq) & (uq)

where @71 is the inverse cumulative distribution function of a standard normal (Arbenz, 2013), and R
is the matrix of correlations, equal to 2sin p;;¢ for each Spearman’s rho, p;j, between property i and

property j.2

0.6.4 Incorporating biological process

The Global Agro-ecological Zones (GAEZ) project uses biologically-motivated calculations to estimate
suitability. GAEZ suitability indexes are normalized to be between 0 and 100, so a comparison between
the Bayesian results and GAEZ requires constructing a common scale. We do this by comparing the
results in ranks, rather than levels. In other words, we look for differences in the percentile quality of
land (see figure 24).

/.

Figure 24: Comparison between GAEZ and the Bayesian odds technique for Arabica.
Blue regions have greater quantile suitability in GAEZ than for the Bayesian odds
approach; red regions show lower suitability in GAEZ, and white regions agree.

Some areas match closely (southern Brazil, Colombia, and parts of Indonesia), while GAEZ attributes
suitability to large regions not supported by the Bayesian methods, such as Amazonian and Congo
rainforest. This indicates a complementarity between GAEZ and the Bayesian odds approach, where
GAEZ provides physical constraints while the Bayesian approach forces the results to match observed
data.

Computing a combined metric
We combine the two approaches by mapping the following:

b(z,y)

s(z,y) Zp(may)m

2See http://www.mathworks.com/help/stats/copulas-generate-correlated-samples.html#buqq6py.
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This attributes zero suitability where either approach specifies it, and otherwise allows them to
reinforce each other. The results are shown in figure 5.7. It also normalizes the result to match
GAEZ 0 - 100 scale.

The combined result shows high suitability in many fewer places, scattered based on where both tech-
niques support their suitability. This provides a stronger basis for identifying the shifts in suitability,
conservatively matched to only the highly suitable regions.

0.6.5 Suitability comparison with Bunn et al.

A recent paper by Bunn et al. (2015) uses data mining methods, such as MaxEnt, on coffee-growing
presence at 42000 individual farms to estimate suitability. Above, we build upon this work by incor-
porating the coffee presence map from their paper into our database. We also use the same collection
of 19 bioclimactic variables, on top of which we add soil variables, and we extend the study of future
uncertainty by using 12 additional global climate model results. While we believe that our approach,
based on Bayesian updating of presence and absence information, is better grounded theoretically and
less arbitrary than their MaxEnt and other data-mining techniques, Bunn et al. provides an important
comparison for our results.

= 100
= 50

@ -50 ¢
= -100

Figure 25: Comparison between Bunn et al. (2015) and the combined Bayesian-
GAEZ approach. Blue areas have higher suitability in the baseline map produce by
Bunn et al., while red is higher using our approach.

Figure 25 displays a comparison of current suitability between the two methods. Most of the world in
this figure is colored yellow, where both techniques specify very little suitability. Some areas, such as
Brazil and Kenya, show differing patterns between the two approaches. In these cases, our approach
produces a result that more closely matches the patterns in the coffee database.

0.6.6 Changes in suitability by country for GAEZ

Country Baseline (1000 Ha) A2 2050 (1000 Ha) Change (1000 Ha) %
Angola 63738 40508 -23230 (-36%)
Argentina 9047 12173 +3126 (+35%)
Australia 13870 7593 -6277 (-45%)
Bahamas 3487 1821 -1666 (-48%)
Bangladesh 11677 208 11379 (-97%)
Belize 2652 1642 1010 (-38%)
Benin 4129 0 -4129  (-100%)
Bhutan 0 1216 +1216  (new)
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Country Baseline (1000 Ha) A2 2050 (1000 Ha) Change (1000 Ha) %
Bolivia 76211 7791 -68420 (-90%)
Brazil 785103 235221 -549882 (-70%)
Cambodia 15559 1084 14475 (-93%)
Cameroon 39370 34157 -5213 (-13%)
Central African Republic 56584 33494 23000 (-41%)
Chad 861 17 844 (-98%)
China 21597 30291 +8694  (+40%)
Colombia 100541 27018 -73523 (-73%)
Congo, Dem. Rep. 230509 199389 -31120 (-14%)
Congo, Rep. 34477 33530 047 (-3%)
Costa Rica 5659 2653 -3006 (-53%)
Cote d’Ivoire 30012 5965 -24047 (-80%)
Cuba 14109 5786 -8323 (-59%)
Dominican Republic 5481 3381 -2100 (-38%)
Ecuador 20067 16909 -3158 (-16%)
El Salvador 2331 1369 -962 (-41%)
Equatorial Guinea 2933 2675 -258 (-9%)
Ethiopia 39590 41674 +2084  (+5%)
French Guiana 8592 4058 -4534  (-53%)
Gabon 27151 26178 -973 (-4%)
Ghana 13116 770 -12346 (-94%)
Guatemala 10667 6718 -3949 (-37%)
Guinea 18599 8595 -10004 (-54%)
Guinea-Bissau 1348 0 -1348  (-100%)
Guyana 21534 2672 -18862 (-88%)
Haiti 3382 754 2628 (-78%)
Honduras 11616 7657 -3959 (-34%)
India 34293 18979 -15314 (-45%)
Indonesia 213246 104505 -108741 (-51%)
Jamaica 1176 0 -1176  (-100%)
Japan 164 39 -125 (-76%)
Kenya 20565 17816 -2749 (-13%)
Lao PDR 22976 12597 -10379 (-45%)
Lesotho 0 268 +268 (new)
Liberia 9908 9293 -615 (-6%)
Madagascar 53116 48359 -4757 (-9%)
Malawi 8475 4583 -3892 (-46%)
Malaysia 35720 14051 21669 (-61%)
Mexico 54345 34878 -19467 (-36%)
Mozambique 62931 35267 -27664 (-44%)
Myanmar 47616 31854 -15762 (-33%)
Nepal 0 3312 +3312 (new)
Nicaragua 12968 7975 -4993 (-39%)
Nigeria 28792 717 27075 (-94%)
Panama 8959 4500 -4459 (-50%)
Papua New Guinea 51723 25520 -26203 (-51%)
Paraguay 29591 10163 -19428 (-66%)
Peru 74724 24262 50462 (-68%)
Philippines 38768 15724 23044 (-59%)
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Country Baseline (1000 Ha) A2 2050 (1000 Ha) Change (1000 Ha) %
Rwanda 2296 9486 ¥100  (+8%)
Senegal 411 0 -411  (-100%)
Sierra Leone 7631 2006 -5625 (-74%)
Solomon Islands 5322 2921 -2401 (-45%)
South Africa 6796 14140 +7344  (+108%)
South Sudan 24980 3986 -20994 (-84%)
Sri Lanka 6507 1144 -5363 (-82%)
Sudan 272 0 272 (-100%)
Suriname 14810 447 -14363 (-97%)
Swaziland 1516 708 -808  (-53%)
Tanzania UR 82305 61876 -20429 (-25%)
Thailand 34606 5546 -29060 (-84%)
Timor-Leste 1803 1242 -561 (-31%)
Togo 4082 409 3673 (-90%)
Uganda 21578 21028 550 (-3%)
United States of America 3960 7218 +3258  (+82%)
Venezuela 83978 12959 -71019 (-85%)
Viet Nam 27213 11551 15662 (-58%)
Zambia 56972 39304 17668 (-31%)
Zimbabwe 3194 992 -2202 (-69%)

0.6.7 Suitability conditional distributions
Soils and nutrients

Coffee is very sensitive to soil conditions. The Harmonized World Soil Database (FAO/ITASA/IS-
RIC/ISSCAS/JRC, 2012) contains six soil components for both the topsoil and subsoil, to study this.
The comparison between the distribution across the entire tropics, and across coffee regions for Arabica
farms is shown in figures 26 and 27.

From the first figure, coffee is more common in soils that have a larger share of sand and smaller share
of silt than the norm. Clay also shows effects where coffee is less frequently grown in regions with
intermediate quantities of clay. From the second figure, it appears that coffee is suitable in regions with
intermediate quantities of calcium carbonate and low levels of gypsum.

Elevation

The distributional analysis shows a very wide range of elevations, possibly reflecting inaccuracies in the
maps of Arabica and Robusta cultivation. See figure 28.

Arabica shows clear diminished presence at low elevations (below 550 m) and increased presence at all
higher elevations. However, there is still probability mass below 550 m. Similarly, Robusta has extra
presence of elevations below 50 m, but still has some elevated presence between 550 m and 1200 m.

The most important result of elevation for coffee cultivation is the temperatures it produces. Hawaii,
for example, has excellent coffee-growing temperatures from sea level to 610m, and Arabica coffee is
grown across this entire range (Thurston et al., 2013). However, the distributions shown in figure 28 are
probably much more broad than is accurate. This data problem does not undermine the method, except
that it increases the amount of uncertainty in the results.
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Macro soil components
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Figure 26: Comparison of distributions of texture soil components. The faded area
shows the distribution of soils generally between 30°N and 30°S. The line shows the

distribution of soils, weighted by coffee planting densities.
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Figure 27: Comparison of distributions of trace soil components. The faded area

shows the distribution of soils generally between 30°N and 30°S. The line shows the
distribution of soils, weighted by coffee planting densities.
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Distribution of cultivation by elevation
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Figure 28: Distributions of elevation for Arabica and Robusta (lines) and for the
tropics in general (green).
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Bioclimatic variables

Figure 29 shows the distributions for all bioclimatic variables. These distributions are more erratic,
because of the uneven spread of the observations within them: several bins in these histograms have no
locations within their range, because of the discrete valuation of the Bioclim variables.

Latitude

We also incorporate latitude itself (see figure 31). Even if there are increases in temperature, different
latitudes will provide different levels of suitability, because of the tilt of the Earth and other processes.
We cannot be certain whether coffee will grow effectively outside of these latitudes, even if they appear
climatically similar in the future to lower latitudes now. Including the distribution of latitude imposes a
slight conservativism on our estimate which is supported by the data.

0.6.8 Changes in suitability by country for our model
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Figure 29: First set of nine of the 19 variables in the Bioclim dataset, with coffee
region distributions shown in black (Arabica) and red (Robusta). We dropped one,
the Annual Temperature Range, since the technique implicitly infers it from the
minimum and maximum temperatures.
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Precipitation of Driest Month Precipitation Seasonality (Coefficient of Variation) Precipitation of Wettest Quarter
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Figure 30: Second set of nine of the 19 variables in the Bioclim dataset, with coffee
region distributions shown in black (Arabica) and red (Robusta). We dropped one,
the Annual Temperature Range, since the technique implicitly infers it from the
minimum and maximum temperatures.
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Distribution of cultivation by latitude

Latitude Distribution: —— Arabica — Robusta

-20 -10 0 10 20
Latitude

Figure 31: The distribution of coffee production for Arabica (red) and Robusta
(blue) across latitude.
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0.7 Extra variability analysis

0.7.1 Computing ENSO impacts

We estimate the impacts of El Nifio and La Nifia by estimating an “impulse response”, which accounts
for the multiple overlapping effects of different ENSO years and the monthly climatology of the NINO
3.4 signal.

Year(t) N ) 24 y
Class(Y t—s
Y =« + Z Z ﬁlQ(Year(t)fY)JrM + Y 24 + JU/Month(t)
Y=Year(t)—N/12+1 M=1 s=1

Year(t) is the year for time ¢t and Month(t) is the month for time ¢; Class(Y) is the class of ENSO event
that happened in year Y (El Nino and La Nifna). N is the number of months to include in the impulse
responses.

Here, the 8% variables describe impulse responses of length N for each class of ENSO event.

As a diagnostic of both the technique and the years used, we apply this impulse response technique to
the NINO 3.4 index itself. The NINO 3.4 index is a measure of the strength of the current state of the
ENSO cycle, and we can use these year definitions to construct the characteristic evolution of the NINO
3.4 during each of these years. See figure 32.

ENSO Response to Years

R — EINino
PN — LaNina

15

1.0
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T T T T
5 10 15 20

Months from event beginning

Figure 32: The estimated 24-month impulse response of the NINO 3.4 indicator to
each of the three ENSO year types.

0.7.2 Additional PCA details

0.7.3 Monthly production

Production records are generally maintained on a yearly basis, but different price information is available
monthly. Different countries harvest and ship beans during different months, and this information can
be used to infer the monthly production added to the global market.

We use the coffee harvested calendar from the Sweet Maria’s Coffee Production Timetable, which is
admittedly uncertain and subject to yearly change. However, they provide a general cycle around which
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PC 1 and 2 as the changes they represent
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Figure 33: Left: The first and second principal component, in terms of the marginal
effects of countries and climate signals. These are displayed more clearly in the main
report. Right: The values of the first three principal components (PC 1 = red, PC
2 = green, PC 3 = blue) across years. As years progress, PC 1 generally increases,
and PC 2 first decreases and then increases.

actual yearly production is assumed to vary. We distribute the production for each country amongst its
harvesting months, and evenly distribute throughout the year production for countries not represented
in the calendar (most notably, Vietnam). We also distinguish between countries that produce Arabica
and Robusta coffees, or those that produce a combination of both every year. The result in the figure
above shows wide variations from month to month.

It is also interesting that the range of variation has increased significantly. The peak of production each
year has increased much faster than the yearly minimum: In the 1960s, the best years produced monthly
peaks over 10 million bags, while the slowest months produced only 3 million bags. In the last decade, the
greatest monthly production has been over 15 million bags, but the worst months have only produced 5
million bags. The situation is even starker for Arabica coffee, where the worst months in the last decade
are comparable to those in the 1960s, although the best months have increased over 20%.

We can use this monthly production data to inform the coffee market model, described below.

0.7.4 Coherent movements

The relatively weak statistical relationship found between El Nino and country-specific yields is not
uncommon among agricultural crops, but it drove an interest in our group into dissecting more clearly
the relationship between global climate signals and country production. We collected five oceanic signals
to explore this further, as shown in figure 1.6.3

SNINO 3.4, NAO, SOI, PDO from NOAA Climate Prediction Center (CPC) (2015), unsmoothed AMO from Enfield
et al. (2001).
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Monthly estimated green coffee production
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Figure 34: Inferred monthly production for Arabica and Robusta coffee, based on
the harvesting calendars of their producing countries.
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A principal component analysis identifies regions of coherent marginal changes, across multiple time-
series. This technique can be used to better understand patterns in large datasets, like the one describing
country coffee production.

For each year, monthly values of the climate signals (delayed 6 months, to capture their impacts on coffee
flowering) and country yields (detrended with locfit and normalized) are included. The first principal
component represents the largest coherent movement of change, followed by the second component, and
so on. Between the first three components, over 50% of the variation in yields can be described. The
share of each of these components by year is shown in Appendix 0.7.2. Each of the components and
what it suggests about the relationship between climate and yields is described below.

The first principal component of the climate-yield system

BEONOW 0070 -0.04  -0.02 0 0.02 004 [1007 [WO¥SMW
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%&/ PDO
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Figure 35: Spatial and temporal representation of the first principal component
of the climate-yield system. Colors in the map represent increases (green) and
decreases (red), and the plot below shows the climate signals across the year (delayed
6 months, so month 1 is July and month 12 is June). Explanation in the text.

The first principal component describes how yields have shifted on average over the past 50 years. Brazil,
Mexico, and China have seen some the largest increases in yield, while Thailand, Myanmar and many
countries in Africa have experienced the largest decreases. Most climate signals have not shown any
trend, except for the Atlantic multidecadal oscillation (AMO) which is currently much higher than it
was in the 1960s. As a result, all of the climate signals in the lower graph are near zero, except for
AMO.

The second and third principal components are dominated by ENSO (the El Nino/La Nifia cycle),
represented by the NINO 3.4 index and the Southern oscillation index, which is known to be strongly
correlated with ENSO but with an opposite sign. PC 2 is represented in the data when NINO 3.4 is high
(El Nifo) and the Pacific decadal oscillation (PDO) is also high, and its effects are reversed when these
signals are both opposite in the direction of their anomalies. The largest effect of this combination, as
shown in the map, is that Brazil, Paraguay, and Papua New Guinea have decreases in yields while India
sees increases. This suggests that yields in these regions will often move in opposite directions, during
many El Nino and La Nina years.
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The second principal component of the climate-yield system
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Figure 36: Spatial and temporal representation of the second principal component
of the climate-yield system. Colors in the map represent increases (green) and
decreases (red), and the plot below shows the climate signals across the year (delayed
6 months). Explanation in the text.
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Observations with low values of PC 2 occur before 1975 and after 2000, while those with high values of
PC 2 occur mostly in the 1980s and early 1990s. This may be driven by the slow oscillation of PDO.
Since only one such cycle has occurred, it is difficult to distinguish the effects of the climate signals
from socioeconomic effects, although most of this was be removed by the flexible trend used in the
preprocessing step.

The third principal component of the climate-yield system
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Figure 37: Spatial and temporal representation of the third principal component
of the climate-yield system. Colors in the map represent increases (green) and
decreases (red), and the plot below shows the climate signals across the year (delayed
6 months). Explanation in the text.

The third principal component also occurs when ENSO is in its El Nino state, and AMO is high or
increasing. In this case, India, Peru, and southern areas in Africa show decreases, while other areas
are not heavily affected. Both PC 2 and PC 3 can equally be understood in their La Nina form (and
associated low values of PDO for PC 2 and low values of AMO for PC 3), which produce changes in
yields in the opposite direction.

Between PCs 2 and 3, the effects of El Nino and La Nina appear across much of the globe. Because the
impacts on most countries result from an interaction between the ENSO cycle and AMO or PDO, the
results did not appear in the initial analysis.

0.7.5 Spatially-weighting weather

To generate weather observations at the same spatial aggregation as yields, we perform the following
procedure. For each political unit,

1. Translate CFSR grid cells into a lattice of points.
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2. Find all grid lattice points within a given country.
3. Identify the measure of harvested area in the coffee database nearest to each lattice point.
4. Take the weighted average of weather observations, weighted by coffee harvested area.

An example is shown below for grid cells that fall within Colombia.

Circles show the location of CFSR grid lattice points. Colors show
the coffee weights.

0.8 Extra market analysis

0.8.1 Market data

The coffee market model incorporates coffee production divided out by producer countries, coffee con-
sumption divided out by consuming countries, and the national and international drivers of the prices
paid to growers and by consumers. The following inputs are used to construct an empirically-grounded
market model. All are available at least at a yearly resolution, and are here implicitly indexed by

year.

q¢; Production in country USDA and FAO
p; Price to growers in country i ICO

d; Consumption in country j UN Comtrade
c¢;j Retail price in country j 1CO

e;; Export from country ¢ to j UN Comtrade
u International coffee price World Bank

Below, we use a consumer price index? to translate prices to year 2000 US dollars, as shown for Arabica
and Robusta international prices in figure 38. Coffee consumers have enjoyed a significant reduction in
prices, in real terms, since the 1970s and 1980s.

4We use a single CPI across all countries, calculated by International Financial Statistics for their “All Items” goods in

advanced economies.
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Figure 38: Arabica and Robusta green bean coffee prices, in terms of constant year
2000 US$ per kilogram.
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The following sections estimate empirical price relationships. While these are greatly simplified, they
provide approximation to the drivers of the international coffee market.

0.8.2 International prices and production

International prices a partially driven by global production, but with considerable autocorrelation. The
simplest form of this relationship is:

u = Qg +O¢1Zq1' + QUi

(2

This expression represents the fundamental driver of international coffee prices: scarcity increases prices
and a glut of coffee reduces them. «; is negative to capture this relationship. as represents the extent
to which prices adjust slowly and are driven by other shocks. If s is near 1, coffee prices have a long
memory; while if it is near 0, they respond immediately to production changes. The result is estimated
in table 13.

Dependent variable:

Arabica Robusta
(1) (2)
g 0.059 0.074
(0.075) (0.060)
oy —0.00000 —0.00001
(0.00001) (0.00002)
o 0.988*** 0.987***
(0.007) (0.007)
Observations 551 551
R? 0.975 0.980
Adjusted R? 0.975 0.980
Residual Std. Error (df = 548) 0.458 0.410
F Statistic (df = 2; 548) 10,669.730*** 13,612.970**
Note: *p<0.1; **p<0.05; ***p<0.01

Table 13: Estimate of the effect of production on international prices.

This estimate places the entire weight of the predictive capacity on the autoregressive term. In other
words, the only significant information about the future international price is the current international
price.

To improve this analysis, we model the dynamics of Arabica and Robusta stocks as a closer proxy for
the driving quantities on the market, in Appendix 0.8.6. We find that international prices continue to
be best explained by their own internal dynamics.
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0.8.3 Prices to growers

Prices to growers are affected by both international prices and local production:

i = Bo + B1g; + Bau

Farmers are paid more when coffee fetches a higher price on the international market (82 > 0) , but less
if there is a relative excess of coffee produced in their country in a given year (8; < 0). We further allow
for country-specific unexplained variation. The results of this estimate are shown in figure 4.5 and in the
table in Appendix 0.8.7. The data is from International Coffee Organization (2015).

0.8.4 Consumer response to prices

We expect consumption to decrease with retail prices:

dj = vo +v1¢j + Yedj -1

Demand does not re-calibrate immediately to changes in retail prices (72 > 0), but we assume that high
prices produce a downward force while low prices produce an upward force (v, < 0). However, we allow
for this “economic” force to be dominated by internal consumption dynamics, represented here as external
demand shocks that persist through the autoregression term 5. These results are shown in figure 4.9
and in table 16 in the Appendix. The data is from International Coffee Organization (2015).

0.8.5 Retail prices follow costs

Retail costs are a composite of the costs for imports from each country, plus a markup:

€ij
Cj = ¢j +Zd7] (pi +0i +l”)
i J

Retailers respond to the costs of their inputs, which combine country-specific production prices (p;),
added prices for processing and tariffs (6;), a cost related to the transportation between them (I;;), and
added costs specific to the retailing country (¢;). The extent to which each of the producing country
variables (p;, 6;, l;;) impact the final retail price is determined by the faction imported from each country

(eij/d;).

0.8.6 Stock analysis

As an improvement, we note that prices are determined more directly by the stocks of coffee beans
available to coffee markets. Therefore, we explore adding stocks of Arabica and Robusta to the model.
These are not recorded separately by variety, although the USDA Foreign Agricultural Service reports
total coffee stocks. We use a Bayesian model to infer the stocks, informed simultaneously by monthly
production and the ability of these stocks to inform prices. The inferred stocks are shown in figure
39.

Reported stocks were much higher than those inferred by the model. This is because the model attempts
to use low initial stocks to explain the high international coffee prices in the 1970s. Later, bursts in stock
correspond closely with increases in recorded stocks— for example, in 1982, 1988, and 2003. However,
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Inferred Coffee Stocks
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Figure 39: Inferred stocks of Arabica (red) and Robusta (blue) coffee, compared with
reported stocks (green) summed over all countries. Arabica and Robusta curves are
shown with 50% confidence intervals, while the recorded curve is shown with a
constant width.
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the model predicts a rapid decrease in the stock after the burst, while recorded stocks remain high after
each event. This could reflect the sensitivity of the market to “fresh” green beans, rather than stored
ones.

The stocks are estimated simultaneously with the effect they have on the prices, thereby using the price
to inform the level of stock. We further estimate the price in logs, and add an effect of the CPI (¢;), to
produce our final model:

logu = ag + a18; + as loguy_1aslog ¢

The estimates and their standard deviations are shown in table 14. The effect of stock levels is still
negative as expected, but not statistically significant. The autocorrelation in «s is decreased because of
the other informative elements. The coefficients also suggest that as CPI increases, international prices
decrease, although this might just reflect the general downward trend in prices.

Arabica Robusta
Mean Std. Dev. Mean Std. Dev.
g 0.96 1.08 0.48 0.6
a7 —847x1077 432x10% —885x10°°% 1.17x10°°
Qs 0.73 0.31 0.89 0.14
o3 —0.16 0.17 —0.08 0.1

Table 14: Coefficient estimates for the full stock model. Only a5, the coefficient on
delayed international price, is significant at a 95% level.

0.8.7 Explaining prices to farmers

Estimates for the determinants of prices to growers of coffee.
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0.8.8 Explaining consumer demand

Country Retail Pr. Previous Yr. Ret. V.E. Prev. V.E. Ret. Pr(>[t|]) Prev. Pr(>[t|)
Austria 0.01 0.35 0.00 0.13 0.88 0.14
Belgium -0.47 1.13 0.30 0.35 0.00 0.01
Bulgaria 0.15 0.20 0.36 0.04 0.03 0.37
Cyprus -0.02 0.23 0.07 0.05 0.24 0.28
Czech Republic -0.01 0.69 0.00 0.32 0.37 0.01
Denmark 0.03 0.83 0.10 0.61 0.53 0.00
Finland 0.04 0.03 0.01 0.00 0.70 0.88
France -0.00 0.66 0.02 0.42 0.95 0.00
Germany -0.08 -0.35 0.17 0.08 0.04 0.22
Hungary -0.06 0.86 0.02 0.68 0.07 0.00
Italy 0.02 0.79 0.11 0.49 0.74 0.00
Latvia 0.01 0.72 0.16 0.67 0.32 0.00
Lithuania 0.01 0.83 0.14 0.78 0.18 0.00
Luxembourg -1.42 0.52 0.53 0.16 0.06 0.03
Malta 0.00 0.43 0.01 0.13 0.68 0.15
Netherlands -0.05 0.74 0.00 0.60 0.76 0.00
Poland 0.00 0.77 0.00 0.49 0.86 0.00
Portugal -0.02 0.79 0.14 0.67 0.14 0.00
Slovakia 0.00 -0.46 0.00 0.18 0.93 0.08
Slovenia 0.02 0.21 0.38 0.04 0.03 0.32
Spain 0.01 0.91 0.51 0.33 0.72 0.00
Sweden -0.04 0.30 0.08 0.10 0.18 0.15
United Kingdom 0.01 0.36 0.01 0.11 0.80 0.35
Japan 0.00 0.78 0.56 0.17 0.64 0.00
Norway 0.03 0.23 0.03 0.05 0.58 0.34
Switzerland -0.04 0.58 0.44 0.12 0.27 0.02
Turkey -0.00 1.02 0.16 0.50 0.82 0.00
USA -0.01 0.12 0.07 0.01 0.35 0.64
Global -0.01 0.70 0.01 0.92 0.08 0.00

Table 16: Determinants of consumption of coffee.

0.8.9 Inferred markups

Producer country markups

Mark-ups over the prices paid to farmers, by producer country, in US cents per pound. These are
estimated simultaneous with the consumer country mark-ups.

Country

To Farmers

Mark Up Std. Dev.

Bolivia
Brazil
Burundi
Cameroon
Sri Lanka
Colombia

148.59 223.80 112.91
107.06 84.80 31.14
91.43 242.62 113.93
79.02 239.24 105.61
59.24 228.88 117.07
124.50 194.32 70.11
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Country To Farmers Mark Up Std. Dev.
Congo, Dem. Rep. of 52.37 257.35 116.00
Costa Rica 137.20 214.23 102.04
Cuba 212.77 256.45 122.19
Dominican Republic 135.59 236.17 113.14
Ecuador 110.42 246.34 115.02
El Salvador 113.71 204.70 99.97
Ethiopia 101.05 168.01 94.98
Gabon 84.70 228.00 113.03
Ghana 108.59 244.26 121.38
Guatemala 137.95 102.30 70.70
Guinea 126.11 212.57 109.47
Haiti 91.81 229.51 114.36
Honduras 126.66 292.54 113.00
Indonesia 97.53 339.22 88.09
Cote d’Ivoire 63.74 226.83 96.66
Jamaica 262.39 239.55 116.14
Kenya 198.15 239.01 109.90
Madagascar 72.44 218.01 109.38
Malawi 77.87 235.31 117.05
Mexico 155.06 221.07 106.49
Nicaragua 139.47 182.82 96.48
Panama 149.15 235.36 106.61
Papua New Guinea 102.78 177.36 100.33
Peru 123.27 243.61 106.00
Rwanda 95.20 230.81 113.27
India 114.96 196.25 92.03
Vietnam 120.97 29.68 25.36
Thailand 93.03 268.90 122.50
Togo 55.70 225.31 108.66
Uganda 44.89 246.98 80.22
Tanzania 111.59 254.27 120.02
Venezuela 258.16 230.70 115.24
Zambia 110.58 219.19 112.56
Congo, Rep. of 33.52 226.88 120.91
Nigeria 118.40 228.59 114.78
Sierra Leone 111.94 234.04 110.40
Zimbabwe 408.97 234.58 118.08
Central African Republic 58.13 229.93 116.94
Trinidad & Tobago 173.12 228.67 114.16
Philippines 107.48 241.64 119.16
Angola 77.44 255.29 117.56
Benin 63.19 233.40 112.44
Liberia NA 234.01 115.80
(Processed) NA 254.26 34.22
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Country To Farmers Distribution Retail Mark Up Std. Dev.
Austria 89.40 184.31  448.67 175.07 34.15
Belgium 79.54 173.86  392.38 139.93 38.09
Bulgaria 74.88 208.52  283.88 31.51 25.96
Cyprus 86.47 112.54  429.70 230.73 35.58
Denmark 84.43 179.78  447.29 184.20 33.37
Finland 93.54 162.29  309.97 58.43 31.33
France 82.91 176.00  283.45 37.98 26.30
Germany 83.16 136.86  380.83 162.09 35.53
Hungary 68.32 205.45  387.22 114.71 39.63
Ttaly 81.08 132.38  571.66 356.53 37.01
Latvia 82.82 249.52  441.37 109.76 42.82
Lithuania 86.29 248.47  422.60 89.78 43.23
Luxembourg 87.45 254.18  559.21 217.24 48.44
Malta* 92.70 228.81 1019.96 692.57 41.21
Netherlands 88.05 192.84  366.49 86.88 34.92
Poland 71.99 178.79  317.54 70.10 32.04
Portugal 74.36 202.26  484.34 206.79 34.62
Slovakia 76.42 219.32  342.90 54.81 31.93
Slovenia 77.50 144.39  367.10 146.78 38.11
Spain 77.46 165.04  350.89 109.90 31.78
Sweden 93.92 168.28  350.25 89.53 34.55
United Kingdom* 81.04 190.61 1354.07 1070.48 37.39
Japan 91.23 182.71 1107.51 828.59 35.21
Norway 98.18 152.83  372.36 122.48 36.67
Switzerland 84.83 184.49  524.88 254.33 35.19
Turkey 91.25 99.09  416.92 226.54 39.70
USA 85.46 133.48  345.80 127.57 37.40

Table 18: Mark-ups over the prices paid to farmers, by consumer country, in US
cents per pound. These are estimated simultaneous with the producer country
mark-ups.

0.8.10 Economic importance of coffee
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Coffee production database

Farm locations in the CIAT database

+  C. arabica locations

« C. canephora locations

B Country
B Interpolated
W State

I County

Figure 41: Quality of geospatial production data for coffee, from Monfreda et al.
(2008). Global agricultural areas are intersected with country-specific datasets to
create a global map of coffee production areas.
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0.8.11 Confidence maps

The first result of the database is its own measure of confidence in the geographic data across the globe.
The confidence maps reflect the combined amount of information available, across the multiple map
inputs. Each contributing map is assigned its own confidence, with maps of global harvest having low
or medium confidence and maps detailing a given country with high confidence. Where multiple input
maps corroborate each other, the confidence increases (see appendix 0.10.1). In figure 42, dark green
represents low confidence, and yellow and tan colors represent high confidence. The band of lighter green
in the middle shows the overlap between maps from Thurston et al. (2013), Monfreda et al. (2008), and
Bunn et al. (2015).

Confidence for Arabica Harvests

Figure 42: Database geospatial harvest confidence, based on the amount and scale
of data available.

0.8.12 Harvest maps

The harvest maps are the main output of the spatial portion of coffee database. For each month, these
combine country-specific information (some of which specifies harvest months as they differ across the
country), with global harvesting regions applied to a calendar of harvest months from Sweet Maria
(2015). Some country calendars are unavailable, so these harvested regions show throughout the year.
The added weight of these multiple instances will be handled next.

0.8.13 Time series data

Both FAO and the USDA Foreign Agricultural Service report production information for coffee, but
the information they provide is quite different. FAO reports total production and harvested area, for
all varieties of coffee combined, with a total of 4242 observations. The USDA reports only production
information, but divides it out by Arabica and Robusta production, with 3211 observations per variety.
The number of countries included also varies by year (see figure 44).

A second complication arises from the definition of the reported year. FAO reports production for calen-
dar years, while USDA reports it for market years which vary by country. This can be an opportunity,
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Figure 43: Harvest maps for Arabica and Robusta varieties, during each month.
Darker colors represent higher levels of evidence that these regions are undergoing
harvest in the given month.
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Figure 44: The number of countries with coffee production data available by year.

allowing us to determine more precisely when production occurs. For example, in Brazil, coffee is har-
vested mainly between May and September. However, the USDA market year for Brazil is from July to
June. So, discrepancies between the FAO and USDA production totals allow us to distinguish, approxi-
mately, between the share of production before and after July, the start of the market year cycle.

Calculating intra-year production

The diagram below shows how the USDA and FAO calendars align. The actual division is different
for each country, depending on the start of the USDA market year.

USDA USDA"

We divide each USDA value into “left” and “right” parts, with USDAY = aUSDA and USDAR =
(1 — «)USDA, where the coefficient « is unknown. Further, we know from the diagram that
USDAR + USDA%L = FAO; that is, the FAO year consists of the 'right’ (latter) portion of one
market year and the ’left’ (early) portion of the next one. Finally, we can use the difference to
estimate o from

FAOt — USDAiH_ = a(USDAt_ - USDAt+) + €

We estimate this division for each country. In the case of Brazil, we find that 12% of production occurs
between May and June, and 88% between July and September. A full table of these portions is shown
in table 20. Where there are blanks, the two datasets could not be consistently combined.

Using these values, we can construct a monthly timeseries of production, as shown in figure 45.

The coffee database consists of paired production and growing region files. The database consists of both
the final files and the code for generating standardized versions of input source files. The standardized
versions have the same format as the merged database.

The coffee database is available in a sharable form, at https://bitbucket.org/jrising/coffeedb/.
Request for access.
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Market Year  Previous Year Following Year  Std. Err.

Brazil Jul - Jun 0.12 0.88 0.05
Madagascar ~ Apr - Mar 0.50 0.50 0.25
Kenya  Oct - Sep 0.91 0.09 0.04
Guinea  Oct - Sep 0.37 0.63 0.33
Panama  Oct - Sep 0.68 0.32 0.28
Costa Rica  Oct - Sep 0.50 0.50 0.06

Ethiopia  Oct - Sep
Rwanda  Apr - Mar 0.17 0.83 0.08
United Republic of Tanzania  Jul - Jun 0.67 0.33 0.11

Sri Lanka  Oct - Sep
Peru  Apr - Mar 0.07 0.93 0.10

Lao People’s Democratic Republic  Oct - Sep
Bolivia (Plurinational State of)  Apr - Mar

Cameroon  Oct - Sep 0.09 0.91 0.11

Cote d’Ivoire  Oct - Sep 0.89 0.11 0.07

Ecuador  Apr - Mar 0.41 0.59 0.25

Benin  Oct - Sep 0.60 0.40 0.20

Ghana  Oct - Sep 0.80 0.20 0.16

Cuba  Jul - Jun 0.46 0.54 0.16

El Salvador  Oct - Sep 0.40 0.60 0.05

Venezuela (Bolivarian Republic of)  Oct - Sep 0.57 0.43 0.15

Papua New Guinea  Apr - Mar 0.26 0.74 0.07

Malawi  Oct - Sep 0.10 0.90 0.16

Togo  Oct - Sep 0.44 0.56 0.16

Guatemala  Oct - Sep 0.42 0.58 0.17

Zimbabwe  Oct - Sep 0.19 0.81 0.10

Viet Nam  Oct - Sep 0.63 0.37 0.07

Dominican Republic  Jul - Jun 0.55 0.45 0.15

Nigeria  Oct - Sep 0.68 0.32 0.19

Liberia  Oct - Sep 0.56 0.44 0.14

Democratic Republic of the Congo  Oct - Sep 0.61 0.39 0.14

Paraguay  Oct - Sep 0.60 0.40 0.34

Trinidad and Tobago  Oct - Sep 0.77 0.23 0.10
Philippines  Jul - Jun

Indonesia  Apr - Mar 0.23 0.77 0.29

Central African Republic  Oct - Sep 0.22 0.78 0.14
New Caledonia  Oct - Sep

United States of America  Oct - Sep 0.19 0.81 0.65
Guyana  Oct - Sep

Honduras  Oct - Sep 0.56 0.44 0.08

Yemen  Oct - Sep 0.36 0.64 0.86

Haiti  Jul - Jun 0.36 0.64 0.19

Thailand  Oct - Sep 0.77 0.23 0.07

Jamaica  Oct - Sep 0.69 0.31 0.98

Angola  Apr - Mar 0.62 0.38 0.11
Equatorial Guinea  Oct - Sep

Mexico  Oct - Sep 0.62 0.38 0.22

India  Oct - Sep 0.98 0.02 0.02

Sierra Leone  Oct - Sep 0.98 0.02 0.60

Malaysia  Oct - Sep 0.58 0.42 0.33

Congo  Oct - Sep 0.28 0.72 0.26

Colombia  Oct - Sep 0.72 0.28 0.06

Burundi  Apr - Mar 0.06 0.94 0.09

Gabon  Oct - Sep 0.23 0.77 0.17

Uganda  Oct - Sep 0.83 0.17 0.09

Nicaragua  Oct - Sep 0.13 0.87 0.08

Zambia  Oct - Sep 0.93 0.07 0.35

Table 20: Portion of the production for each market year attributed to the previous
calendar year and to the next one.
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Figure 45: Production by month and country, inferred by the discrepancies between
USDA FAS and FAO accounting systems.
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0.9 Standardized format

0.9.1 Growing Region Files

Growing regions are stored as raster (gridded) files describe “masks” of which regions are under harvest
in a given month. They are at a resolution of 12 pixels per degree (a grid width of 5 minutes), and cover
the entire area from 180°W to 180°E longitude, and 30°S to 30°N latitude.

The grids are stored as NetCDF files. Each NetCDF file contains a “harvest” variable and a “confidence”
variable. The harvest variable specifies areas under harvest in a given month, and has dimensions
Longitude x Latitude x 12, with a separate mask for each month. Values may range between 0 and
1, based on how much evidence there is of harvest there. The confidence mask describes the level of
confidence in the information, also from 0 to 1.

Note that neither the “harvest” nor “confidence” variables describe the portion of a given grid cell
under harvest. Instead, both relate to the evidence that the grid cell contains areas under harvest. The
difference between the harvest value and confidence value is expanded upon in the Merging Growing
Region Files section.

0.9.2 Production Files

Production data consists of a .csv file that specifies the production, planted area, harvested area, and
yields (as data is available for each) in a given year and a given region. Where the data describes sub-
country regions, an additional region definition file (*-regions. csv) and a shapefile database (collections
of a .shp, .shx, and .dbf file) describe an association between the production records and growing
regions. Each polygon in the shapefile database identifies a region for which production data is available
in one or more years, and region definition files specify which region is described in each record.

The production file has the following column header:
year,region,variety,produced,prod-se,harvested,harv-se,planted,plant-se,yield,yield-se

year is the year being described. Not all years need to be represented for a region. variety is Arabica,
Robusta, or combined. region is the region identifier in the associated region definitions file. This may
change across years. produced is the calendar year production, measured in metric tonnes. prod-se is
the standard error of the production estimate. It may be NA if the error estimate is available, but this
will cause any other estimate to be chosen over it if one is available. harvested is the harvested area in
hectares, and harv-se is its standard error. This may be NA. planted is the planted area in hectares,
and plan-se is its standard error. This may be NA. yield is the yield in terms of MT per hectare, and
yield-se is its standard error. The yield is computed as production divided by planted area. This may
be NA.

The region definitions file has the following column header:
region,PID,weight

region is a region identifier, unique across the entire database. If there are multiple rows with the same
region identifier, all of these PIDs will be combined in the region. PID is a polygon IDs in the associated
growing region file. The same PID may occur in multiple regions, since different regions may be used
to describe different years. weight is a measure of the accuracy of the production region definitions.
In general, weight is calculated as (mean planted area) / (total polygon area), and is between 0 (no
confidence) and 1 (full confidence).

The impacts of climate change on coffee: trouble brewing Ixxxii



THE EARTH INSTITUTE
COLUMBIA UNIVERSITY

0.10 Generating merged database files

0.10.1 Merging growing region files

Region definition files are merged according to the weight of evidence of harvest in each month. At every
point, the new weight in the combined region definitions is,

w(gij) _ Z wz(x,y)cl(m,y)

P (& (xa y)
C(Jf,y) = Zci(‘xay)
i
This formulation allows confidence to increase where multiple data sources are available, and causes

contradictory maps (for example, one that says that coffee is grown in a region and one that says it is
not) to result in averaged values.

Arabica 1  Arabica 0 | Combined 1 Combined 0
Arabica 1, Robusta 0 1,0 0.5, 0 1,0 0.5, 0
Arabica 0, Robusta 0 0.5,0 0,0 0.5, 0.5 0,0

Additional logic is used where maps that describe Arabica and Robusta growth separately are combined
with those that lump them together.

0.10.2 Merging production files

Production files are merged using a Bayesian approach, with a uniform prior. Each estimate (a given
year-region value for production, harvested area, or planted area) is translated into a distribution, p(y;).
Then the merged estimate of production is,

p(y) = Hp(yi)

This allows the database to account for uncertainty in the estimates, as well as allowing corroborating
records to decrease the amount of uncertainty. Additional logic used where time series that split out
Arabica and Robusta growth (such as the USDA Foreign Agricultural Service) are combined with ones
that lump them together (such as FAO).

Combining estimates
1. Associate uncertainty with each observation (k/v).
2. Case 1: Same or Combined + (Arabica or Robusta):
2 T
a% + o’%

3. Case 2: Combined + Arabica + Robusta:

H;aTXN(amaaaa)N(rmm or)N(a +7|pe, oc)
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oq.* and o,.* from Inverse Hessian.

0.11 Production maps

We performed a geospatial matching between diagrams in the gray literature and countries maps.
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Figure 47: Two examples of the geospatial matching process, using hand corre-
spondences for Colombia (left) and country-wide shape matching for El Salvador
(right).
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