
Chapter 5: Empirics of production

Jeffrey Sachs, James Rising,
Tim Foreman, John Simmons, Manuel Brahm

The Earth Institute
Columbia University

October 1, 2015

Prepared for the Global Coffee Forum
Milan, Italy

Part of
The impacts of climate change on coffee: trouble brewing

http://eicoffee.net/

Chapter 5: Empirics of production 1

http://eicoffee.net/


In this chapter, we develop a globally applicable coffee production model, which describes the predictabil-
ity of yields under current and future weather.

1 Crop modeling approaches

One broad approach to predicting crop development and providing decision-support tools to farmers is
through biological process models. These models capture the process of plant development (phenology)
at the individual plant level, and are available for many crops as models for widely-used crop modeling
systems such as DSSAT and APSIM1

Biological process models of coffee production appear to be in their early stages. The most advanced
may be the one developed by Rodŕıguez et al. (2011), with a “tri-trophic, physiologically-based system
perspective”, capable of studying water and light needs and pest impacts. The next generation of
biological models, represented by Dauzat et al. (2014) and Maro et al. (2014) are still under development.
This state of the literature motivated our focus on statistical models.

A statistical production model relates high-resolution weather data (such as temperature and precipita-
tion) with observed yields (Schlenker and Roberts, 2009). The most advanced of these estimate the effect
of growing degree-days (GDDs) and “killing degree-days”(KDDs) in a non-linear fashion, and account for
varying unobserved characteristics that are idiosyncratic to each region, such as management, elevation,
and soil properties. Statistical approaches have been used to study individual regions (e.g., Gay et al.,
2006; Guzmán Mart́ınez et al., 1999). We use our global coffee production database and to generate a
global model which with elements that vary from one country to another.

The statistical techniques we use fall under the heading of econometrics. Econometric techniques allow
for the inclusion of many different parameters and a treatment of differences between regions which are
not directly captured in our data. They also allow for the careful identification of “causal” relationships,
rather than simple correlation. We then extend this statistical model with a new technique developed
here, which we call hierarchical modeling. The hierarchical model consists of three levels of hierarchy:
sub-national models, national models, and a global model. At each level, different regions are allowed
to have different responses of yields to weather, but are also informed by the effect estimated across all
regions (e.g., all national models are informed by the global combined model).

These statistical models are estimated using natural experiments, by comparing observed yields in years
with different distributions of weather to estimate the effect of weather in general. These experiments
completely inform our models of production. The models below include daily minimum and maximum
temperatures, precipitation, and humidity. We do not include soil properties in this chapter because it
is impossible to do statistical experiments where soil characteristics vary over time, to see its effects. As
a result, the statistical model cannot determine the effects of soil.

This approach puts a ”black box” around the complicated system surrounding production, and makes
no attempt to disentangle the effects of farmers responding to weather, the effects of that weather on the
crops themselves, and the effects that these have on the plant’s susceptibility to disease. This black box
is both a strength and a limitation. It captures realistic relationships between weather and yields, rather
than theoretical responses of the crops in an experimental setting. It can capture the environmental
determinants of coffee disease spread, and their impacts implicitly. It can also be used to predict yields
under climate change and weather events. However, because it cannot distinguish the social and natural
causes, it makes an implicit assumption that yields will continue to respond the same way to increasing
temperatures over time.

1DSSAT is the Decision Support System for Agrotechnology Transfer(?) and APSIM is the Agricultural Production
Systems Simulator(?).
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The production model can also be used to predict yields months before a harvest. By combining clima-
tological signals, like ENSO, for which there is some predictive skill, with yearly averages (climatologies),
it is possible to generate plausible weather patterns to apply to the model. However, these results could
only be taken as suggestive: the statistical models we produce only account for about 32 - 38% of the
variation in yields across time and space. The biennial cycle of coffee, for example, is not explicitly
captured in our model, which considers only effects driven by weather (Bernardes et al., 2012).

In addition to the biennial cycle, there are a large number of factors which drive coffee yields that are
not explicitly included in this model: market drivers, evolving technology, changing varieties, and the
governance and politics which frequently affect the coffee sector. These are all important. By limiting our
analysis to the student of weather and climate change, we can better understand those elements.

2 Weather and climate data

The current climate is represented by weather records from recent history. We use weather data since
1979 from the Climate Forecast System Reanalysis (CFSR). This data product combines station and
satellite measurements using weather models to produce reliable weather estimates at a high spatial and
temporal resolution. The spatial resolution is .32◦x.32◦, a grid with boxes that are about 35 km on a
side at the equator. The temporal resolution is hourly, which we use to generate growing degree-days at
a daily scale.

Yields and production data are not available in a high-resolution, gridded form. Instead, yields, in
the form of production quantities and harvested areas, are reported for political units. High resolution
information about coffee producing regions needs to be combined with these low resolution recorded
yield data. For example, coffee is grown exclusively in the southwest of Guatemala, in regions that cover
8.7% of the land area, but production data is reported for the entire country. Since we know that the
country-wide production is coming only from these regions, we can limit the weather and other data
used to infer coffee production relationships. To match the gridded weather data with growing regions,
we use our coffee production database to spatially aggregate the weather data.

Climate Forecast System Reanalysis

The Climate Forecast System Reanalysis is a global weather product constructed by NOAA (Saha
et al., 2010). CFSR merges the overlapping ranges of satellite products, as they are available across
years:

Chapter 5: Empirics of production 3



produced by JMA for JRA-25, covering the years 
from 1987 through 2003. These were made available 
for the CFSR project and replaced the GTS GMS data 
in the assimilation database for that period. MODIS 
polar wind data are obtained from the NCEP 
archives for the CFSR starting in late 2004.

SSM/I OCEAN SURFACE WIND SPEED. Microwave imager 
data from the SSM/I are processed to derive ocean 
surface wind speed observations. SSM/I micro-
wave radiance datasets, from DMSP satellites, were 
obtained from NCDC starting in 1993. Beginning 
in 1997 the DMSP data are available in the NCEP 
archives. The SSM/I brightness temperature data 
were converted to wind speeds by a neural net 
algorithm developed at NCEP and used in NCEP 
operations (Krasnopolsky et al. 1995; Gemmill and 
Krasnopolsky 1999; Yu et al. 1997).

SCATTEROMETER WINDS. Ocean surface wind datasets 
have been available from the European Space Agency 
ERS-1/AMI scatterometer since 1991 and from the 
ERS-2/AMI instrument since 1996. ESA has recently 
reprocessed ocean surface wind vectors from the 
ERS-1 and ERS-2 satellite archives, covering the 
years from 1991 through 2007. The reprocessed data 
were obtained for the entire period and assimilated 

in the CFSR. The NASA QuikSCAT SeaWinds scat-
terometer was launched in 1999. SeaWinds ocean 
surface vector wind data from the NCEP operational 
archives were assimilated in CFSR from 2001 until 
it went nonoperational in 2009. The NRL WindSat 
scatterometer data are assimilated in CFSR starting 
September 2008.

Satellite radiance–based observing systems in the CFSR. 
The NCEP operational GDAS has directly assimilated 
satellite radiances for a number of years, but CFSR is 
the first NCEP global reanalysis to do so. The histori-
cal TOVS and ATOVS archives were obtained from 
the NESDIS Web-based CLASS archive online. All 
of the other radiance data were obtained from the 
NCEP operational archives. Figure 4 is a CFSR usage 
chart of radiance-measuring instruments illustrating 
the time period during which each instrument was 
assimilated.

TOVS RADIANCES. The CFSR assimilated radiance 
data from satellite sounders with TOVS instru-
ments onboard nine NOAA polar-orbiting satel-
lites from TIROS-N to NOAA-14 starting in 1978. 
The 1B datasets were calibrated using operational 
calibration coefficients stored in the files to convert 
the raw data counts into brightness temperatures 

FIG. 4. Radiance instruments included in CFSR and the time period each was assimilated.
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CFSR combines both conventional and satellite data from the following sources:

Conventional: Radiosondes and Pibals, AMMA special observations, Aircraft and ACARS data,
Surface observations, PAOBS, SATOB observations, SSM/I ocean surface wind speed, Scatterome-
ter winds

Satellite-radiance: TOVS radiances, Recalibrated MSU radiances, ATOVS radiances, GEOS
radiances, Aqua AIRS, AMSU-A, and AMSR-E data, MetOp IASI, AMSU-A, and MHS data,
CHAMP/COSMIC GPS radio occultation data.

Spatially-weighting weather

To generate weather observations at the same spatial aggregation as yields, we perform the following
procedure. For each political unit,

1. Translate CFSR grid cells into a lattice of points.

2. Find all grid lattice points within a given country.

3. Identify the measure of harvested area in the coffee database nearest to each lattice point.

4. Take the weighted average of weather observations, weighted by coffee harvested area.

An example is shown below for grid cells that fall within Colombia.

Chapter 5: Empirics of production 4



● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

Circles show the location of CFSR grid lattice points. Colors show
the coffee weights.

3 Brazil case study

The Brazilian Institute of Geography and Statistics (IBGE) provides municipality-level production for
coffee in Brazil since 1990. Nearly 2,700 municipalities with coffee production histories are included, and
representing an average resolution of less than 40 km. This dataset allows for a broad case study of the
impacts of climate change at a high spatial resolution. We refine the structure of our production model
for Brazil before applying it globally.

3.1 An empirical model of production

Using the IBGE Brazilian coffee production estimates, combined with high resolution weather from the
CFSR reanalysis product, we estimate a physically-based statistical model of coffee production. The
model predicts yields using a nonlinear relationship with temperature and precipitation. We base our
model on Schlenker and Roberts (2009), and divide GDDs into three groups: beneficial growing degree-
days between 0◦C and 33◦C, killing degree-days above 33◦C, and frost degree days below 0◦C. We also
use the average minimum temperature, which appears to be more significant than frost degrees. This
kind of statistical relationship is based on the biological response of coffee to temperature, but puts
a “black box” around farmer responses and ecosystem and pest dynamics. If farmers are providing
sufficient irrigation and shade to coffee plants, the effect of high temperatures will be mitigated beyond
what biological models suggest on their own.

Calculating growing degree-days

Growing degree-days (GDDs) are calculated using a continuous sinusoidal fit to minimum and
maximum daily temperatures, as shown below:
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The distribution of coffee production by municipality elevation.  The range of typical 
elevations for growing Arabica and Robusta are shown above the histogram. 

 
The multilevel relationship is that: 
 

GDD KDD Frosts P recip Precipyit = βi
G

it + βi
K

it + βi
F

it + βi
P

it + βi
Q 2

it  + εit  
βi* = Elevationβ*0 + α* i + ηi  
 

where the top line is the normal regression relationship, but with separate coefficients for each                             
municipality i . The second line relates all municipality coefficients together according to their                         
varying elevations.  The results are shown below. 
 
The results are not significant at the 95% level, but the point values align well with the common                                   
wisdom. Arabica, grown at higher elevations, is much more sensitive to weather than Robusta.                           
We find that as elevation increases, the potential increased yield from higher temperatures as                           
well as the potential damage due to extreme temperatures increases. No similar result is found                             
for frosts. 

9 

Figure 1: Brazil dataset across space and elevation. Left: Density of coffee pro-
duction, as the average production divided by municipality area. Regions in green
account for the majority of production. Most production occurs in the south, how-
ever there are coffee producing regions also in the southern Amazon. Right: Dis-
tribution of coffee producing area, displayed across the average elevation of each
municipality. The greatest extent of coffee production occurs in municipalities with
around 900 m of elevation, but coffee is also produced in municipalities with a much
lower elevation, including a peak around 200 m. The range of typical elevations for
growing Arabica and Robusta are shown above the histogram.
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Calculations for growing degree-days and killing degree-days. Any
temperatures above a given lower threshold (L.T.) are included,
up to a maximum of an upper threshold (U.T.). As temperatures
shift over the course of a day, fractional growing degree-days are
accumulated.
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Figure 2: Histograms displaying the number of growing seasons with a given number
of frost degree-days, growing degree-days, and killing degree-days. The exponential
decays in frost and killing degree days are useful for capturing the impact of extreme
events. The broad range of growing degree-days represented in the center histogram
allows for accurate estimates of the coffee growth response.

We also include precipitation, as the total accumulated precipitation over the six months before harvest.
Precipitation is included as a quadratic, to capture the expectation that both too little precipitation and
too much precipitation are harmfully impact yields.

3.2 Optimal temperature range

Guzmán Mart́ınez et al. (1999) suggest that 10◦C is the appropriate base temperature for calculating
GDDs for coffee. We explore a large range of minimum and maximum temperatures for GDDs, seeking
the limits that provide the greatest predictive capacity. See Appendix .1 for predictive capacity of a
range of possible limits. We find that a minimum temperature of 0◦C and a maximum temperature
of 33◦C for beneficial GDDs is optimal. This means not only that all days over 0◦C are estimated as
beneficial, but that higher temperatures up to 33◦C are progressively more beneficial. A day above 33◦C
is not immediately detrimental, but it has a progressively smaller benefit until it becomes negative, and
we find that temperatures over about 35◦C are detrimental in Brazil.
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3.3 Predictive periods

Coffee production is very sensitive to weather during flowering, and the period during which we correlate
weather with yields is important. To determine the optimal span of weather for predicting yields, we
try out many combinations of starting and ending months. The harvesting period in Brazil ends in
September, so we consider months starting with October to predict the yield in the next year. The
coefficients of models for each of these periods are shown in figure 3.

A few features are important in these results. In the top graph displaying coefficient values, areas in
the upper-left are gray, denoting that models that use only the months shortly preceding harvest do not
produce significant results. Second, we expect the effect of GDDs to be positive, KDDs negative, the
linear component of precipitation (precip) to be positive, and the quadratic component of it (precip2)
to be negative. This is confirmed for most date ranges, and we want to avoid regions that misestimate
these values due to noisy or minor effects. Finally, the t-values figures show the confidence in these
values, and are a measure of the statistical significance of the model as a whole. These values generally
decrease as the starting month becomes later.

Figure 4 shows the combined t-values for the GDD and KDD coefficients. The highest t-value is for
GDD and KDD values calculated just for January and February. The probably reflects a highly sensitive
period for the berry production. Nearly as high, and covering a six-month span, is December through
May. We will use this as our span for calculating weather impacts.

3.4 Econometric model

The form of the statistical model is,

log yit = αi + γgit + κkit + µmit + πpit + ψp2it + P3,s(i)(t) + εit

Above and in the other models below, the observation variables and their corresponding effect estimating
coefficients are:

Var. Coeff.
Growing degree-days git γ

Killing degree-days kit κ
Average minimum temperature mit µ

Total precipitation (linear) pit π
Total precipitation (quadratic) p2it ψ

where i indexes municipalities, t the years, and P3,s(i)(t) is a state-specific cubic trend to capture shifting
productive capacity. We aggregate weather from December to May, and use 0◦C to 33◦C as the limits
for computing growing degree-days.

Interpreting regression tables

Many of the results in this chapter are in the form of multiple regression tables. Each regression is
of the form,

yi = α+ β1x1,i + · · ·+ βkxk,i + εi

which describes the relationship between a dependent variable, yi, taking different values for each ith
observation, and a linear combination of independent variables, x1,i, . . . , xki . The εi term represents
the remaining error that cannot be explained by the model. In addition, these models use “fixed-
effects”, which are parameters unique to each region, so that the model is effectively estimated by
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Figure 3: Coefficients from estimating models with different month spans, and the
t-values intervals associated with each coefficient. The top 118 municipalities in
harvest density were used.
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Figure 4: The sum of t-values across the GDD and KDD coefficients, for identifying
the most effective range.
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considering the effects of changes in the independent variables, rather underlying static differences
between them.

The regression tables are mean to be read in columns. The first column specifies the variable for
which an effect is reported, and the model columns specify the size of that effect. If a coefficient esti-
mated is 10, that means that the dependent variable increases by 10 for every unit the independent
variable increases.

The numbers directly below each effect and reported in parentheses are the values ’standard errors’,
a measure of the uncertainty of that value. If the standard error is less than half of the value, then
there is 95% confidence that the sign of the coefficient in question is correct. This corresponds to
the statistical significance of the estimate, and is denoted by asterisks (∗∗∗).

The results are shown below as a table of statistical coefficients. Table 1 displays the results across all
municipalities, and 2 is for the 118 municipalities with the greatest density of coffee harvesting.

Dependent variable:

Means Log Yields Harvested Hectares

(1) (2)

GDDs / 1000 2.946 0.152∗∗∗ 72.869
(0.931) (0.050) (124.246)

KDDs / 1000 0.149 −2.806∗∗∗ −2,197.369∗∗∗

(0.146) (0.342) (555.055)
Avg. Min. 0.944 −0.091∗∗∗ −25.0

(3.499) (0.018) (34.0)
Precip. (m) 1.421 0.347∗∗∗ −9.587

(0.719) (0.028) (64.092)
Precip.2 (m) 2.538 −0.366∗∗∗ −8.520

(2.439) (0.036) (84.618)
State cubic trends Yes Yes

Observations 43,165 43,185
R2 0.383 0.655
Adjusted R2 0.343 0.633
Residual Std. Error 0.535 (df = 40542) 4,300.446 (df = 40561)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: Estimates for statistical models relating growing degree-days, killing
degree-days, average minimum temperature, and precipitation to the logarithm of
yields, and to harvested area, for all municipalities. Stars (***) represent statistical
significance levels, showing that most coefficients appear to have a relationship with
production outputs.

We find that increases in temperature below a daily maximum temperature of 33◦C limit are beneficial,
resulting in higher yields and higher total production (see Appendix .1). Based on this, we compute
“growing degree days” (GDDs) as the degree days2 between 0◦C and 33◦C. All temperatures above 33◦C

2An explanation of degree days is at https://en.wikipedia.org/wiki/Degree_day and Appendix 3.1 for our method of
calculating them.
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Dependent variable:

Log Yields Harvested Hectares

(1) (2)

GDDs / 1000 0.475∗∗∗ 1,700.306∗

(0.109) (976.997)
KDDs / 1000 −2.989∗∗ −23,179.330∗∗∗

(1.423) (8,681.404)
Avg. Min. −0.183∗∗∗ −290.009

(0.0183) (335.665)
Precip. (m) 0.441∗∗∗ −1,168.520∗

(0.076) (677.845)
Precip.2 (m) −0.494∗∗∗ 1,978.722∗∗

(0.099) (854.580)

Observations 3,181 3,181
R2 0.320 0.485
Adjusted R2 0.290 0.462
Residual Std. Error (df = 3043) 0.364 14,412.800

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Estimates for statistical models relating growing degree-days, killing
degree-days, average minimum temperature, and precipitation to the logarithm of
yields, and to harvested area, for the top 118 municipalities by production density.
Stars (***) represent statistical significance levels, showing that most coefficients
appear to have a relationship with production outputs.
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are combined into the measure of “killing degree days” (KDDs).

Any days in which the maximum temperature exceeds 35◦C have a sharply harmful effect. As a result,
even small increases in temperatures under climate change can produce large decreases in yields, partic-
ularly in regions where temperatures are currently nearly optimal. This is consistent with other work on
the nonlinear effects of high temperatures (Schlenker and Roberts, 2009).

Every additional 1000 GDDs (of which there are about 3000 on average in coffee-growing municipalities
in Brazil) increases yields by about 16%. Every additional 100 KDDs (an average year will have only
150 KDDs) decreases yields by 76%. These values are estimated using marginal changes, so the average
year is the baseline from which these percent changes are applied.

Figure 5 shows a graphical representation of the growing degree-day production model, with 95% confi-
dence intervals. The assumptions are as described before: growing degree-days and precipitation are cal-
culated using hourly reanalysis data; state cubic trends capture the evolution of coffee production.

There is also a large and statistically significant negative effect on harvested acres. This suggests that
in hot years where the crop is damaged, the plants are simply not harvested. As a result, the actual
damaging effects of high temperatures on yields are likely to be greater than reported. The yield numbers
hide the fact that unproductive plots in poor years can be left unharvested, causing both total production
and harvested acres to decrease without as large of decreases in yield.
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Figure 5: Marginal impact on log yields for an additional day at a given temperature.
Up to 33◦C, additional temperature results in greater yields. Above 33◦C, this effect
is sharply diminished and hot days above 35◦C result in large decreases in yield.
The grey band shows the 95% confidence intervals around the estimated effect for
a single day at a given temperature.

3.5 Multilevel Brazil model

Next we extend the model to include “multilevel” effects. The multilevel model studies how the estimated
coefficients vary across other characteristics of the municipalities. In this case, we consider how the effect
of GDDs, KDDs, and average minimum temperature vary with elevation. Elevation is both an important
determinant of coffee quality, and is a proxy for the variety of coffee grown: Brazil grows both Arabica
and Robusta coffees, but does not report their production separately (until recent years).
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The multilevel relationship is that:

log yit = αi + γigit + κikit + µimit + πipit + ψip
2
it + εit

γi = γ0 + βγElevationi + ηγ,i

κi = κ0 + βκElevationi + ηκ,i

µi = µ0 + βµElevationi + ηµ,i

πi = π0 + βπElevationi + ηπ,i

ψi = ψ0 + βψElevationi + ηψ,i

where the top line is the normal regression relationship, but with separate coefficients for each munic-
ipality i. The remaining lines relates all municipality coefficients together according to their varying
elevations. The results are shown in table 3 and in a graphical form in figure 6.

Next we consider how the sensitivity to temperature varies with elevation. The parameters that mediate
this sensitivity– the positive effect of GDDs and the negative affect of KDDs– are shown in figure 6. We
find that temperatures above 33◦C at 1000m above sea level are five times as damaging as they are at
250m. These results support the common wisdom: Arabica, grown at higher elevations, is much more
sensitive to weather than Robusta. We find that as elevation increases, the potential increased yield from
higher temperatures as well as the potential damage due to extreme temperatures increase.
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Figure 6: The effect of an additional GDD and KDD as these vary by elevation.
As elevation increases, plants become more sensitive to temperatures. The effect of
GDDs increases, though very slightly. The harmful effects of KDDs increase quickly.

3.6 Yield estimates under a warmer climate

We can apply the production model to weather produced from climate change. As a proxy for climate
change, we estimate yields using historical weather data increased by 2◦C. Precipitation values are left
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Dependent variable:

Log Yields Harvested Hectares

(1) (2)

GDDs / 1000 0.208∗∗∗ 40.303
(0.051) (130.508)

Elev. GDDs / 1000 0.001∗∗∗ 2.110∗∗∗

(0.0002) (0.657)
KDDs / 1000 −6.106∗∗∗ −4,600.562∗∗∗

(0.516) (725.931)
Elev. KDDs / 1000 −0.016∗∗∗ −17.054∗∗∗

(0.002) (3.653)
Avg. Min. −0.183∗∗∗ −25.750

(0.018) (34.334)
Elev. Avg. Min. −0.00000∗∗ −0.183

(0.00000) (0.183)
Precip. (m) 0.358∗∗∗ −32.650

(0.030) (76.846)
Elev. Precip. (m) 0.0001 −0.164

(0.0001) (0.285)
Precip.2 (m) −0.391∗∗∗ −10.825

(0.039) (98.941)
Elev. Precip.2 (m) 0.0001 0.648∗

(0.0001) (0.390)

Observations 42,141 42,161
R2 0.378 0.651
Adjusted R2 0.338 0.628
Residual Std. Error 0.538 (df = 39582) 4,282.486 (df = 39601)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: The effects of GDDs, KDDs, and average minimum, as each varies by
elevation. While the estimates are not significant, they suggest increasing sensitivity
to temperature in the form of both GDDs and KDDs as elevation increases. All
municipalities in Brazil used.
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unchanged, since they show an unclear trend. This change produces several effects: it increases the
number of GDDs benefiting yields, increases the number of KDDs harming yields, and increases average
minimum temperature. The resulting balance between these three impacts is not evident a priori. The
figure below shows the distribution for municipality yields across Brazil, from observed data, and under
climate changed weather predictions.
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Figure 7: Growing degree day histograms, after an increase of 2◦C.

As shown in figure 8, the observed yields show wide variation. The blue distribution is shifted to the
left, eliminating some of the most spectacular yields and lowering the average yield. The average yield
in the warmer experiment is about 80% of the original yields (see figure 9).
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Figure 8: Observed yields over the period from 1990 - 2015 are shown in red, and
model predictions under weather with temperatures increased by 2◦C shown in blue.
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Figure 9: Distribution of the proportional change in yields, with a mean yield 79%
of historical yields.
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4 Global production

In this section, we estimate the a model like the one for Brazil for all countries. Using the intra-
year production estimates in the coffee database, we estimate the relationship between country yields
and weather. We use the temperature span of 0◦C to 33◦C for growing-degree days, as estimated for
Brazil.

The first estimate is exactly analogous to the Brazil estimate, in that a single coefficient is estimated across
all countries for the global average effect of GDDs, KDDs, frost degrees, and quadratic precipitation.
This is reported in table 4 and shown schematically in figure 10.

Log Yield Production

GDD / 1000 0.238∗∗ 1, 710.548
(0.119) (5, 917.907)

KDD / 1000 −1.935 −3, 955.098
(1.786) (43, 378.870)

Frost Deg. −0.005 284.772
(0.008) (1, 550.480)

Year Precip −3.454 707, 932.900
(12.928) (483, 967.400)

Year Precip2 14.494 −10, 991, 768.000
(135.355) (6, 955, 772.000)

FE Region, variety RegionV ariety
Trends Y Y
Errors Region Region
Observations 1,945 1,945
R2 0.684 0.807
Adjusted R2 0.676 0.802
Residual Std. Error (df = 1896) 0.441 33,325.380

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Growing degree day model, pooled across all countries.

4.1 Hierarchical model framework

It is reasonable to expect different countries to have different effects from temperatures. We could
estimate each country independently, and this would be an “unpooled” model. However, we also want
the model for one country to inform, to an extent supported by the data, the model for another country.
To capture this, we will construct a “hierarchical model”, where each country’s sensitivity to temperature
will be drawn from a common distribution, simultaneously estimating each country’s parameters and the
distribution across all of them.

Furthermore, we allow varieties in different regions to operate differently, as supported by the data. For
example, where plentiful data supports a higher optimal growing temperature for Robusta, the model
should represent this. If very little data is available, the predicted response should by default conform to
an average for that region and variety. Finally, we want to incorporate higher resolution data where it
is available. The municipality data in Brazil informs the same common parameters as the Brazil-specific
country-level yield data.
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Figure 10: Pooled model growing degree-day plot.
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We have developed a technique for allowing this kind of data-driven multiple levels of aggregation and
degrees of generalization, based on Bayesian Hierarchical Modeling (Gelman et al., 2014) and Inversion
Theory (Menke, 2012). Under this technique, each country and sub-country region has its own param-
eters, but the parameters are further modeled as being related to each other. The hierarchical model
is a direct extension of the statistical production model, which can be thought of as many different
production models combined together.

Derivation of the hierarchical modeling system

Formally, we want to allow each variety in each country to have its own model, consisting of
coefficients for growing degree-days, killing degree-days, average minimum temperature, and pre-
cipitation. The pooled model is as follows:

log yit = αi + βv + γgit + κkit + φfit + πpit + ψp2it + εit

while the partially pooled model starts with the unpooled relationship,

log yivt = αi + βv + γivgit + κivkit + φivfit + πivpit + ψivp
2
it + εivt

Consider the GDD coefficient for country i and variety v, γiv. To partial pool across countries for a
given variety, this coefficient comes from a distribution of possible coefficient values, characterized
by an unknown mean and standard deviation for that variety:

γiv ∼ N (γv, τγv )

Further, we partially pool these ’hyperparameters’ as coming from a distribution across all vari-
eties:

γv ∼ N (γ, τγ)

We apply this for each parameter, γ, κ, φ, π, ψ.

Estimating a partially-pooled model

Computationally, estimating this form of model can be very difficult. We construct an innovative
framework for doing this using Ordinary Least-Squares matrix algebra.

The Gaussian relationships above, such as γiv ∼ N (γv, τγv ), are mathematically equivalent to the
OLS-style relationship,

γiv = γv + τgammavη with η ∼ N (0, 1)

Under OLS, error terms are members of a Gaussian distribution, εi ∼ N (0, σ2
e). We represent the

hyper-model for the γ coefficient with the OLS-style relationships

γiv = γv + εiv

γa = γc + εa

γr = γc + εr

and similarly for the other coefficients. It is then possible to rewrite these and the original unpooled
relationship to take the same form, with the same complete set of coefficients:
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log yivt = αi +γivgit + · · ·
log yivt =

∑
j αj1j=i +

∑
ju γjugit1ju=iv +γa0 + γr0 + γc0 + · · ·

0 =
∑
j αj0 +

∑
ju γju1ju=1a −γa1− γr0− γc0 + · · ·

0 =
∑
j αj0 +

∑
ju γju1ju=2a −γa1− γr0− γc0 + · · ·

...
0 =

∑
j αj0 +

∑
ju γju1ju=1r −γa0− γr1− γc0 + · · ·

...
0 =

∑
j αj0 +

∑
j uγju1ju=1c −γa0− γr0− γc1 + · · ·

...
0 =

∑
j αj0 +

∑
j uγju0 +γa1 + γr0− γc1 + · · ·

0 =
∑
j αj0 +

∑
j uγju0 +γa0 + γr1− γc1 + · · ·

The first line is the start of the original model to be estimated. The second line re-writes this with
more systematically, and in such a way that “constant” terms can be set to zero for fictional obser-
vations. The remaining lines are fictional observations added to estimate the entire model.

We have built this approach into a tool for the R statistical package which is available at https:

//github.com/eicoffee/hierlm.

Figure 11 shows the effects of partial pooling at different levels. As the level of pooling increases, the
range of country-specific values is brought closer together.

The results are shown in table 5. Only the hyperparameter means are shown. Each statistically significant
country coefficient is listed in Appendix .4, and the remainder are in an online table at http://eicoffee.
net/. The first column uses only observations at the country level. The second column places a prior
on the Brazil coefficients, conforming to the Brazil municipality estimates above. These more-precise
estimates then inform the global distribution for each coefficient, which in turn informs all of the countries,
including Brazil.

We now extend the analysis to the global context. To do so, we develop a new technique, which allows
each country to have its own model, but for all of these models to be informed by each other. Within
each country, Arabica and Robusta are assumed to have distinct model parameters, where the data
permits.

The growing degree-day effect is greater for the Robusta variety, while the estimated effect of killing
degree-days is greatest in regions that grow both Arabica and Robusta. A useful metric is the “break-
even” temperature, the crossing point for which lower temperatures improve yields, on average, and
higher temperatures depress yields. This is similar for Arabica and combined countries, at about 37◦C.
The corresponding temperature for Robusta is 40.5◦C.

Figure 12 shows the variation across countries of the effect of killing degree-days and the break-even
temperature. South America and Southern Africa show the least sensitivity to temperature, while
Indonesia and the lands near it show the most.

Another way to view these results is to compare the break-even temperature to the average maximum
daily temperature. This is shown in figure 13. Countries in the lower-left corner have both low maximum
temperatures and low break-even temperatures. Since their estimated break-even temperature is over
10◦C above their average maximums, these countries are at lower risk of losing their harvests. Countries
in the lower-left corner are the most at risk: they have higher temperatures, but remain sensitive to high
temperatures. Three countries occupy the upper-right corner: Liberia, Nigeria, and Guinea. These coun-
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Figure 11: Distribution across countries of values for the GDD and KDD coefficients
for different levels of pooling.
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Dependent variable:

Countries only

(1) (2)

GDDs / 1000 (Combined) 0.079 0.217∗∗

(0.123) (0.095)
GDDs / 1000 (Arabica) 0.131 0.229∗∗

(0.112) (0.103)
GDDs / 1000 (Robusta) 0.161 0.401∗∗∗

(0.152) (0.133)
KDDs / 1000 (Combined) −0.110 −1.801∗∗∗

(0.543) (0.323)
KDDs / 1000 (Arabica) −0.082 −1.731∗∗∗

(0.556) (0.356)
KDDs / 1000 (Robusta) −0.157 −1.766∗∗∗

(0.543) (0.348)
Avg. Min. (Combined) −0.077 −0.108

(6.344) (6.248)
Avg. Min. (Arabica) −0.134 −0.152

(7.147) (7.164)
Avg. Min. (Robusta) −0.114 −0.163

(8.964) (8.985)
Precip. (Combined) −4.285 −2.124

(5.792) (2.390)
Precip. (Arabica) −1.689 −0.156

(6.058) (3.254)
Precip. (Robusta) −1.565 −0.279

(5.971) (3.403)
Precip.2(Combined) 5.340 −5.530

(82.317) (28.605)
Precip.2(Arabica) 21.749 11.218

(79.174) (37.825)
Precip.2(Robusta) 12.794 0.264

(88.198) (42.271)

Observations 3,011 3,016
R2 0.902 0.903
Adjusted R2 0.885 0.886
Residual Std. Error 0.335 (df = 2561) 0.336 (df = 2566)
F Statistic 52.575∗∗∗ (df = 450; 2561) 52.962∗∗∗ (df = 450; 2566)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Hierarchical model results, for the mean of the global distribution of coef-
ficients for each parameter and each variety.
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Figure 12: Coefficients of killing degree-days and the temperature at which yields
decrease, across countries for the partially pooled model.
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tries are estimated to have the highest temperature thresholds for yield losses. They are also amongst the
countries with the highest maximum temperatures, averaged over their coffee growing regions, suggesting
that these countries have achieved some level of adaptation to their high temperatures.

Other countries with similarly high temperatures have much lower break-even temperatures. That is,
adaptation to high temperatures does not come inevitably from the experience of them. One explanation
for their low temperature sensitivity is that Liberia, Nigeria, and Guinea all produce largely Robusta
crops, which has lower sensitivity than Arabica. However, Benin, Togo, and Sri Lanka, with among
the highest temperatures, also mainly produce Robusta, and they remain very sensitive to tempera-
ture.
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Figure 13: Observed average maximum daily temperature, 2004 - 2009, compared
to the temperature at which yield losses are predicted.

4.2 Future productivity

We can use the global hierarchical model to predict yields under the future climate as described by global
climate models. We shift temperatures according to the change in the average temperature and apply the
average proportional change in precipitation to all daily weather observations from the CFSR dataset.3

3In section 3.6, we perform a similar analysis for the model of Brazilian yields. There, we leave precipitation unchanged,
because of the lack of evidence of trends in precipitation in Brazil. However, agreement across climate models on predicted
precipitation varies across countries. Here we include the effect of predicted precipitation changes to most accurately
represent the predicted climate of 2050. The effects of climate change on precipitation remain very uncertain, despite
occasional agreement across models, and the predicted patterns shown in section ?? should not be construed as confident
forecasts.

Chapter 5: Empirics of production 25



Then we calculate GDDs, KDDs, average minimum temperatures, and total precipitations, and apply
them to the model. Figure 14 shows the result.

Figure 14: Changes in yield by country, for weather averaged over growing regions
for each country.

As shown in the map, the impacts vary widely across countries, with some countries losing as much as
70% of their productivity, while others see increases of over 60%. Most areas in South America will
experience improvements, while many countries in Central America, Southern and Eastern Africa, and
Eastern Oceania will experience losses.

This result shows some general features about the variation across countries, but the actual country
predictions have low confidence. In many cases, these country predictions are based on few data points,
and the global distribution used to inform all of them is broad because of the uncertainty of predicting
country aggregated yields. See appendix 4 for more information.

4.3 Humidity

Humidity can have varying effects on coffee. The plant needs reasonably high levels of humidity during
the flowering season to avoid floral atrophy, but humidity is also crucial to the development of coffee
rust. For these reasons, the timing of high humidity levels appears to be particularly important. Here
we see how Arabica coffee yields respond to a one-standard deviation increase in humidity during each
particular month in the year leading up to harvest. Robusta appears to be less sensitive to humidity
effects than Arabica.

Humidity data is from the NCEP CFSR. The reanalysis data is available at 1/12◦ resolution globally,
which is then aggregated to the country-month level using weights from the coffee database. The values
are reported as specific humidity at 6 hour intervals, which here is averaged over each month for the year
prior to harvest.

Monthly effects of humidity are shown in figure 15, and the table of coefficients is in Appendix .2. The
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Figure 15: Arabica humidity effects. Only the humidity one and seven months
before harvest are significant at 95% confidence.
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coefficients result from the following model:

log(y) = f(T ) +

12∑
m=1

βmqm + hc(t) + αc + γt + εct

where f(T ) is a non-linear function of temperature, estimated using the number of days spent in 1-degree
C temperature bins, hc(t) is a country-specific linear time trend, αc and γt are country and year fixed-
effects. Each βm is the effect of specific humidity m months prior to the beginning of harvest on log
yield.

4.4 Interpreting empirical model results

Climate change impacts coffee production through many different channels. Foremost, climate change
reflects changes in temperature and patterns of precipitation– that is, changes in climate mean changes
in weather. The models above estimate the relationship between changes in weather and changes in
yields, and then extrapolate those changes to their responses under climate change.

There are important differences between unexpected weather shocks and prolonged climate changes.
Coffee farming will find ways to adapt to repeated shocks of higher temperatures, and we hope our
estimates provide an upper bound on the production impacts of climate change. However, the evidence
for such adaptation is limited. Burke and Emerick (2012) study maize in the United States, and while
there is a clear potential for adaptation to warmer temperatures, they find almost no evidence of it. The
reasons for this empirical result are unclear.

The effects that we measure of temperature on yields cannot be unambiguously interpreted as the biolog-
ical response to temperatures. Temperatures could be simultaneously affecting other species that then
affect coffee. For example, the harmful affects of average minimum temperature could reflect a greater
capacity for coffee rust or the coffee berry borer to proliferate in these warmer years. It could also reflect
decreased activity on the part of farmers on hot days.

Our results should be taken as representing a holistic effect as it has occurred in the past. The extent to
which it will occur in the future may be up to us.

.1 Selecting temperature limits

.2 Humidity

.3 Harvest month effects

Figure 16 shows the estimated “effect” of harvesting in a given month on yields, from 1962 to 2011,
after accounting for country-specific and monthly effects. The gradual increase reflects improvements in
coffee production technology, but this increase is not without large shocks. An increase in yields between
1985 and 1990 was followed by a decrease and then another period of increased yields. Countries that
harvest in different months also show different fortunes, with the greatest yields to countries that harvest
in January and the lowest to those that harvest in February. Since the only country that harvests in
January but not February is Colombia, this probably reflects the difference between Colombia yields and
yields in other February-harvesting countries.
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Figure 16: Monthly harvesting effects. Each point on this curve represents the
difference in yields predicted by harvesting in a given month, according to coffee
harvest calendars, after accounting for country-specific and month effects. Uses
calendars from https://www.sweetmarias.com/coffee.prod.timetable.php
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Low \High 28 29 30 31 32 33 34

-4 87.4211 87.4289 87.3933
-3
-2 87.4290
-1
0 87.2986 87.4213 87.4290 87.3934
1 87.4290
2 87.4212 87.4289 87.3933
3 87.4288
4 87.2983 87.4210 87.4286
5 87.0758 87.2979 87.4206
6 87.2978 87.4205 87.4281
7 87.0755 87.2978 87.4204
8 87.2981
9 87.0749 87.2979 87.4199
10 86.7490 87.0737 87.2975
11 87.0729 87.2975 87.4182
12 86.7398 87.0700 87.2954
13
14
15 86.6988 87.0369 87.2645

Table 6: F-statistics for a growing degree-day and killing degree-day model of coffee
production, across all countries. The highest F-stats use a maximum temperature
of 30◦C and a minimum temperature between -3◦C and 1 ◦C.

.4 Hierarchical model coefficients

Only statistically-significant coefficients are listed below. The remaining are available online at http:

//eicoffee.net/.

Dependent variable:

Countries only

(1) (2)

GDDs / 1000, Liberia (Robusta) 0.515∗∗ 0.743∗∗∗

(0.213) (0.202)
GDDs / 1000, Gabon (Robusta) 0.223 0.448∗∗

(0.215) (0.204)
GDDs / 1000, Yemen (Arabica) 0.274 0.368∗∗

(0.189) (0.183)
GDDs / 1000, Benin (Robusta) 0.146 0.409∗∗

(0.221) (0.207)
GDDs / 1000, Cuba (Arabica) 0.222 0.322∗

(0.194) (0.189)
GDDs / 1000, Angola (Robusta) 0.121 0.354∗

(0.217) (0.205)
GDDs / 1000, Malaysia (Robusta) 0.266 0.495∗∗

(0.220) (0.209)
GDDs / 1000, Brazil (Combined) 0.079 0.158∗∗∗

(0.208) (0.052)
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Dependent variable:

Countries only

(1) (2)

GDDs / 1000, Guinea (Robusta) 0.356∗ 0.603∗∗∗

(0.199) (0.185)
GDDs / 1000, Nigeria (Robusta) 0.377∗ 0.659∗∗∗

(0.212) (0.197)
GDDs / 1000, Suriname (Combined) 0.346∗ 0.484∗∗

(0.204) (0.189)
GDDs / 1000, Zambia (Arabica) 0.217 0.300∗

(0.178) (0.173)
GDDs / 1000, Paraguay (Arabica) 0.248 0.405∗∗∗

(0.165) (0.156)
GDDs / 1000, Guyana (Robusta) 0.140 0.374∗

(0.223) (0.211)
GDDs / 1000, Congo (Robusta) 0.145 0.382∗

(0.215) (0.203)
KDDs / 1000, Cambodia (Combined) −0.112 −1.798∗∗∗

(0.567) (0.363)
KDDs / 1000, Ethiopia (Arabica) −0.082 −1.731∗∗∗

(0.581) (0.394)
KDDs / 1000, Cameroon (Combined) −0.111 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Ghana (Robusta) −0.180 −1.787∗∗∗

(0.568) (0.386)
KDDs / 1000, Saudi.Arabia (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Guatemala (Arabica) −0.082 −1.731∗∗∗

(0.581) (0.394)
KDDs / 1000, Guatemala (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Dominica (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Liberia (Robusta) −0.123 −1.732∗∗∗

(0.568) (0.386)
KDDs / 1000, Gabon (Robusta) −0.155 −1.764∗∗∗

(0.568) (0.386)
KDDs / 1000, Gabon (Combined) −0.110 −1.800∗∗∗

(0.568) (0.364)
KDDs / 1000, Yemen (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Yemen (Arabica) −0.078 −1.728∗∗∗

(0.581) (0.394)
KDDs / 1000, Jamaica (Arabica) −0.082 −1.731∗∗∗

(0.581) (0.394)
KDDs / 1000, Samoa (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Kenya (Arabica) −0.082 −1.731∗∗∗

(0.581) (0.394)
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Dependent variable:

Countries only

(1) (2)

KDDs / 1000, Kenya (Combined) −0.114 −1.804∗∗∗

(0.568) (0.364)
KDDs / 1000, India (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Saint.Lucia (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Rwanda (Arabica) −0.082 −1.731∗∗∗

(0.581) (0.394)
KDDs / 1000, Peru (Arabica) −0.082 −1.731∗∗∗

(0.581) (0.394)
KDDs / 1000, Vanuatu (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Malawi (Arabica) −0.082 −1.731∗∗∗

(0.581) (0.394)
KDDs / 1000, Benin (Robusta) −0.156 −1.754∗∗∗

(0.565) (0.384)
KDDs / 1000, Benin (Combined) −0.114 −1.773∗∗∗

(0.559) (0.358)
KDDs / 1000, Cuba (Arabica) −0.076 −1.725∗∗∗

(0.581) (0.394)
KDDs / 1000, Togo (Robusta) −0.244 −1.827∗∗∗

(0.560) (0.380)
KDDs / 1000, Tonga (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Indonesia (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Mauritius (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Angola (Combined) −0.109 −1.799∗∗∗

(0.568) (0.364)
KDDs / 1000, Angola (Robusta) −0.159 −1.768∗∗∗

(0.568) (0.386)
KDDs / 1000, Trinidad.and.Tobago (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Nicaragua (Arabica) −0.084 −1.733∗∗∗

(0.581) (0.394)
KDDs / 1000, Malaysia (Robusta) −0.159 −1.768∗∗∗

(0.568) (0.386)
KDDs / 1000, Mozambique (Combined) −0.111 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Uganda (Combined) −0.111 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Brazil (Combined) −0.110 −1.971∗∗∗

(0.568) (0.309)
KDDs / 1000, Guinea (Robusta) −0.101 −1.703∗∗∗

(0.566) (0.384)
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Dependent variable:

Countries only

(1) (2)

KDDs / 1000, Panama (Arabica) −0.082 −1.731∗∗∗

(0.581) (0.394)
KDDs / 1000, Costa.Rica (Arabica) −0.081 −1.731∗∗∗

(0.581) (0.394)
KDDs / 1000, Nigeria (Robusta) −0.085 −1.674∗∗∗

(0.562) (0.382)
KDDs / 1000, Ecuador (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, El.Salvador (Arabica) −0.081 −1.729∗∗∗

(0.581) (0.393)
KDDs / 1000, Puerto.Rico (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Thailand (Combined) −0.109 −1.796∗∗∗

(0.567) (0.363)
KDDs / 1000, Thailand (Robusta) −0.165 −1.773∗∗∗

(0.568) (0.386)
KDDs / 1000, Haiti (Arabica) −0.087 −1.731∗∗∗

(0.580) (0.393)
KDDs / 1000, Belize (Combined) −0.110 −1.799∗∗∗

(0.568) (0.364)
KDDs / 1000, Sierra.Leone (Robusta) −0.239 −1.835∗∗∗

(0.563) (0.383)
KDDs / 1000, Philippines (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Timor.Leste (Combined) −0.109 −1.799∗∗∗

(0.568) (0.364)
KDDs / 1000, Colombia (Arabica) −0.082 −1.731∗∗∗

(0.581) (0.394)
KDDs / 1000, Burundi (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Burundi (Arabica) −0.082 −1.731∗∗∗

(0.581) (0.394)
KDDs / 1000, Fiji (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Madagascar (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Nepal (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Suriname (Combined) −0.089 −1.779∗∗∗

(0.568) (0.364)
KDDs / 1000, Zambia (Arabica) −0.082 −1.731∗∗∗

(0.581) (0.394)
KDDs / 1000, Papua.New.Guinea (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Zimbabwe (Arabica) −0.094 −1.742∗∗∗

(0.581) (0.393)
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Dependent variable:

Countries only

(1) (2)

KDDs / 1000, New.Caledonia (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, New.Caledonia (Arabica) −0.082 −1.731∗∗∗

(0.581) (0.394)
KDDs / 1000, Paraguay (Arabica) −0.043 −1.660∗∗∗

(0.571) (0.387)
KDDs / 1000, Guyana (Robusta) −0.157 −1.766∗∗∗

(0.568) (0.386)
KDDs / 1000, Guyana (Arabica) −0.081 −1.730∗∗∗

(0.581) (0.394)
KDDs / 1000, Guyana (Combined) −0.111 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Honduras (Arabica) −0.084 −1.733∗∗∗

(0.581) (0.394)
KDDs / 1000, Myanmar (Combined) −0.110 −1.800∗∗∗

(0.568) (0.364)
KDDs / 1000, Mexico (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
KDDs / 1000, Congo (Robusta) −0.165 −1.773∗∗∗

(0.568) (0.386)
KDDs / 1000, Congo (Combined) −0.111 −1.800∗∗∗

(0.568) (0.364)
KDDs / 1000, Sri.Lanka (Combined) −0.108 −1.793∗∗∗

(0.567) (0.363)
KDDs / 1000, Comoros (Combined) −0.110 −1.801∗∗∗

(0.568) (0.364)
Avg. Min., Liberia (Robusta) −0.817∗∗∗ −0.873∗∗∗

(0.141) (0.140)
Avg. Min., Gabon (Robusta) −0.642∗∗∗ −0.714∗∗∗

(0.181) (0.180)
Avg. Min., Yemen (Combined) 0.402∗ 0.369∗

(0.208) (0.207)
Avg. Min., Jamaica (Arabica) 0.297∗∗ 0.269∗∗

(0.117) (0.116)
Avg. Min., Kenya (Arabica) −1.325∗∗∗ −1.369∗∗∗

(0.288) (0.288)
Avg. Min., Kenya (Combined) −0.755∗∗∗ −0.794∗∗∗

(0.156) (0.154)
Avg. Min., Malawi (Arabica) −0.255∗ −0.288∗∗

(0.141) (0.140)
Avg. Min., Angola (Combined) −0.367∗ −0.400∗∗

(0.199) (0.198)
Avg. Min., Angola (Robusta) 0.218∗∗ 0.178∗

(0.110) (0.108)
Avg. Min., Malaysia (Robusta) 2.766∗∗∗ 2.680∗∗∗

(0.164) (0.162)
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Dependent variable:

Countries only

(1) (2)

Avg. Min., Brazil (Combined) −0.077 −0.091∗∗∗

(34.091) (0.020)
Avg. Min., Guinea (Robusta) 0.329∗∗∗ 0.300∗∗

(0.125) (0.124)
Avg. Min., El.Salvador (Arabica) −0.525∗∗∗ −0.526∗∗∗

(0.145) (0.145)
Avg. Min., Sierra.Leone (Robusta) −1.196∗∗∗ −1.197∗∗∗

(0.147) (0.147)
Avg. Min., Suriname (Combined) −1.532∗∗∗ −1.559∗∗∗

(0.174) (0.172)
Avg. Min., Zambia (Arabica) −0.204 −0.237∗

(0.125) (0.123)
Avg. Min., Congo (Robusta) −1.389∗∗∗ −1.441∗∗∗

(0.155) (0.154)
Avg. Min., Sri.Lanka (Combined) −0.426∗∗∗ −0.402∗∗∗

(0.140) (0.139)
Precip., Brazil (Combined) −4.285 0.347∗∗∗

(6.691) (0.030)
Precip., Suriname (Combined) −12.378∗ −10.271∗∗

(6.552) (4.007)
Precip.2, Brazil (Combined) 5.340 0.366∗∗∗

(88.871) (0.039)

Observations 3,011 3,016
R2 0.902 0.903
Adjusted R2 0.885 0.886
Residual Std. Error 0.335 (df = 2561) 0.336 (df = 2566)
F Statistic 52.575∗∗∗ (df = 450; 2561) 52.962∗∗∗ (df = 450; 2566)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Humidity Effects

Dependent variable:

Month prior to harvest log(yield)

1 −8.562
(12.703)

2 17.386
(12.509)

3 −2.607
(13.406)

4 −23.317∗

(12.756)
5 4.781

(13.223)
6 −30.035∗∗

(12.008)
7 15.021

(14.797)
8 −14.813

(16.496)
9 19.024

(16.429)
10 −6.111

(17.747)
11 35.636∗

(18.228)
12 −33.730∗∗

(15.444)

Observations 738
R2 0.895
Adjusted R2 0.881
Residual Std. Error 0.191 (df = 653)
F Statistic 66.164∗∗∗ (df = 84; 653)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Rodŕıguez, D., Cure, J. R., Cotes, J. M., Gutierrez, A. P., and Cantor, F. (2011). A coffee agroecosystem
model: I. growth and development of the coffee plant. Ecological modelling, 222(19):3626–3639.

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J.,
Behringer, D., et al. (2010). The ncep climate forecast system reanalysis. Bulletin of the American
Meteorological Society, 91(8):1015–1057.

Schlenker, W. and Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to us
crop yields under climate change. Proceedings of the National Academy of sciences, 106(37):15594–
15598.

Chapter 5: Empirics of production 37



Acknowledgments

We would like to thank Walter Baethgen at the International Research Institute for Climate and
Society for his thoughtful reviews of the work here and all of his comments and suggestions.

Many thanks also to:

Andrea Illy, illycaffè S.p.A., Chairman/CEO

Mario Cerutti, Lavazza S.p.A., Corporate Relations

Belay Begashaw, Columbia Global Centers, Director

Mauricio Galindo, International Coffee Organization, Head of Operations

Alexandra Tunistra, Root Capital, Advisory Services

Amir Jina, University of Chicago, Economics

Joann de Zegher, Stanford University, Environment and Resources

Marion Dumas, Columbia University, School of International and Public Affairs

Chapter 5: Empirics of production 38


	Crop modeling approaches
	Weather and climate data
	Brazil case study
	An empirical model of production
	Optimal temperature range
	Predictive periods
	Econometric model
	Multilevel Brazil model
	Yield estimates under a warmer climate

	Global production
	Hierarchical model framework
	Future productivity
	Humidity
	Interpreting empirical model results
	Selecting temperature limits
	Humidity
	Harvest month effects
	Hierarchical model coefficients


